Shinichiro Mouri
Kyoto University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shinichiro Mouri.
Nano Letters | 2013
Shinichiro Mouri; Yuhei Miyauchi; Kazunari Matsuda
We demonstrate the tunability of the photoluminescence (PL) properties of monolayer (1L)-MoS2 via chemical doping. The PL intensity of 1L-MoS2 was drastically enhanced by the adsorption of p-type dopants with high electron affinity but reduced by the adsorption of n-type dopants. This PL modulation results from switching between exciton PL and trion PL depending on carrier density in 1L-MoS2. Achievement of the extraction and injection of carriers in 1L-MoS2 by this solution-based chemical doping method enables convenient control of optical and electrical properties of atomically thin MoS2.
Chemical Communications | 2008
Thibaut Forestier; Stéphane Mornet; Nathalie Daro; Taishi Nishihara; Shinichiro Mouri; Koichiro Tanaka; Olivier Fouché; E. Freysz; Jean-François Létard
We report the synthesis of spin crossover 69 nm spherical nanoparticles of [Fe(NH2-trz)3](Br)2.3H2O.0.03(surfactant) (NH2trz = 4-amino-1,2,4-triazole, surfactant = Lauropal), prepared by the reverse micelle technique, which exhibit at room temperature a thermal hysteresis characterized by magnetic, diffuse reflectivity and Raman studies.
Nature Communications | 2015
Feijiu Wang; Daichi Kozawa; Yuhei Miyauchi; Kazushi Hiraoka; Shinichiro Mouri; Yutaka Ohno; Kazunari Matsuda
Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.
Journal of the Physical Society of Japan | 2003
Tomoharu Hasegawa; Shinichiro Mouri; Yasuhiro Yamada; Koichiro Tanaka
Dielectric properties are studied in quantum paraelectric SrTiO 3 under UV-light illumination from 100 Hz to 1 MHz at low temperatures. We demonstrate that the complex dielectric constant is strong...
Physical Review B | 2014
Shinichiro Mouri; Yuhei Miyauchi; Minglin Toh; Weijie Zhao; Goki Eda; Kazunari Matsuda
We studied multiexciton dynamics in monolayer WSe2 using nonlinear photoluminescence (PL) spectroscopy and Monte Carlo simulations. We observed strong nonlinear saturation behavior of exciton PL with increasing excitation power density and long-distance exciton diffusion, reaching several micrometers. We demonstrated that the diffusion-assisted exciton-exciton annihilation (EEA) model accounts for the observed nonlinear PL behavior. The long-distance exciton diffusion and subsequent efficient EEA process determined the unusual multiexciton dynamics in atomically thin layered transition metal dichalcogenides.
Journal of Physical Chemistry Letters | 2013
Daichi Kozawa; Yuhei Miyauchi; Shinichiro Mouri; Kazunari Matsuda
We studied the fluorescence (FL) properties of highly exfoliated graphene oxide (GO) in aqueous solution using continuous-wave and time-resolved FL spectroscopy. The FL spectra of highly exfoliated GO showed two distinct peaks at ∼440 (blue) and ∼300 nm [ultraviolet (UV)]. The FL of GO in the UV region at ∼300 nm was observed for the first time. The average FL lifetimes of the emission peaks at ∼440 and ∼300 nm are 8-13 and 6-8 ns, respectively. The experimentally observed peak wavelengths of pH-dependent FL, FL excitation spectra, and the FL lifetimes are nearly coincident with those of aromatic compounds bound with oxygen functional groups, which suggests that the FL comes from sp(2) fragments consisting of small numbers of aromatic rings with oxygen functional groups acting as FL centers in the GO.
Nano Letters | 2016
Daichi Kozawa; Alexandra Carvalho; Ivan Verzhbitskiy; Francesco Giustiniano; Yuhei Miyauchi; Shinichiro Mouri; A. H. Castro Neto; Kazunari Matsuda; Goki Eda
Strongly bound excitons confined in two-dimensional (2D) semiconductors are dipoles with a perfect in-plane orientation. In a vertical stack of semiconducting 2D crystals, such in-plane excitonic dipoles are expected to efficiently couple across van der Waals gap due to strong interlayer Coulomb interaction and exchange their energy. However, previous studies on heterobilayers of group 6 transition metal dichalcogenides (TMDs) found that the exciton decay dynamics is dominated by interlayer charge transfer (CT) processes. Here, we report an experimental observation of fast interlayer energy transfer (ET) in MoSe2/WS2 heterostructures using photoluminescence excitation (PLE) spectroscopy. The temperature dependence of the transfer rates suggests that the ET is Förster-type involving excitons in the WS2 layer resonantly exciting higher-order excitons in the MoSe2 layer. The estimated ET time of the order of 1 ps is among the fastest compared to those reported for other nanostructure hybrid systems such as carbon nanotube bundles. Efficient ET in these systems offers prospects for optical amplification and energy harvesting through intelligent layer engineering.
Journal of the American Chemical Society | 2012
Jin Sung Park; Yasuhiko Hirana; Shinichiro Mouri; Yuhei Miyauchi; Naotoshi Nakashima; Kazunari Matsuda
Understanding of electronic and optical features of single-walled carbon nanotubes (SWNTs) has been a central issue in science and nanotechnology of carbon nanotubes. We describe the detection of both the positive trion (positively charged exciton) and negative trion (negatively charged exciton) as a three-particle bound state in the SWNTs at room temperature by an in situ photoluminescence spectroelectrochemistry method for an isolated SWNT film cast on an ITO electrode. The electrochemical hole and electron dopings enable us to detect such trions on the SWNTs. The large energy difference between the singlet bright exciton and the negative and positive trions showing a tube diameter dependence is determined by both the exchange splitting energy and the trion binding energy. In contrast to conventional compound semiconductors, on the SWNTs, the negative trion has almost the same binding energy to the positive trion, which is attributed to nearly identical effective masses of the holes and electrons.
Nanoscale | 2015
Yuka Tsuboi; Feijiu Wang; Daichi Kozawa; Kazuma Funahashi; Shinichiro Mouri; Yuhei Miyauchi; Taishi Takenobu; Kazunari Matsuda
Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.
Journal of Physical Chemistry Letters | 2014
Daichi Kozawa; Xi Zhu; Yuhei Miyauchi; Shinichiro Mouri; Masao Ichida; Haibin Su; Kazunari Matsuda
The origin of near-infrared (NIR) luminescence from graphene oxide (GO) is investigated by photoluminescence (PL) excitation spectroscopy, time-resolved PL spectroscopy, and density functional theory based many body perturbation theories. The energy of experimentally observed NIR PL peak depends on the excitation energy, and the peak broadens with increasing excitation energy. It is found that the PL decay curves in time-resolved spectroscopy show build-up behavior at lower emission energies due to energy transfer between smaller to larger graphene nanodisc (GND) states embedded in GO. We demonstrate that the NIR PL originates from ensemble emission of GND states with a few nanometers in size. The theoretical calculations reveal the electronic and excitonic properties of individual GND states with various sizes, which accounts for the inhomogeneously broadened NIR PL. We further demonstrate that the electronic properties are highly sensitive to the protonation and deprotonation processes of GND states using both the experimental and theoretical approaches.