Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinji Kamisuki is active.

Publication


Featured researches published by Shinji Kamisuki.


Chemistry & Biology | 2009

A Small Molecule That Blocks Fat Synthesis By Inhibiting the Activation of SREBP

Shinji Kamisuki; Qian Mao; Lutfi Abu-Elheiga; Ziwei Gu; Akira Kugimiya; Youngjoo Kwon; Tokuyuki Shinohara; Yoshinori Kawazoe; Shin-ichi Sato; Koko Asakura; Hea-Young Park Choo; Juro Sakai; Salih J. Wakil; Motonari Uesugi

Sterol regulatory element binding proteins (SREBPs) are transcription factors that activate transcription of the genes involved in cholesterol and fatty acid biosynthesis. In the present study, we show that a small synthetic molecule we previously discovered to block adipogenesis is an inhibitor of the SREBP activation. The diarylthiazole derivative, now called fatostatin, impairs the activation process of SREBPs, thereby decreasing the transcription of lipogenic genes in cells. Our analysis suggests that fatostatin inhibits the ER-Golgi translocation of SREBPs through binding to their escort protein, the SREBP cleavage-activating protein (SCAP), at a distinct site from the sterol-binding domain. Fatostatin blocked increases in body weight, blood glucose, and hepatic fat accumulation in obese ob/ob mice, even under uncontrolled food intake. Fatostatin may serve as a tool for gaining further insights into the regulation of SREBP.


Biochemical Pharmacology | 2003

Effects of glycolipids from spinach on mammalian DNA polymerases.

Chikako Murakami; Taeko Kumagai; Takahiko Hada; Ui Kanekazu; Satoshi Nakazawa; Shinji Kamisuki; Naoki Maeda; Xianai Xu; Hiromi Yoshida; Fumio Sugawara; Kengo Sakaguchi; Yoshiyuki Mizushina

We purified the major glycolipids in the class of monogalactosyl diacylglycerol (MGDG), digalactosyl diacylglycerol (DGDG) and sulfoquinovosyl diacylglycerol (SQDG) from a green vegetable, spinach (Spinacia oleracea L.). MGDG was an inhibitor of the growth of NUGC-3 human gastric cancer cells, but DGDG and SQDG had no such cytotoxic effect. Therefore, we studied MGDG and its monoacyglycerol-form, monogalactosyl monoacylglycerol (MGMG), in detail. MGMG with one fatty acid molecule was obtained from MGDG with two fatty acid molecules by hydrolyzing with a pancreatic lipase. MGMG was also found to prevent the cancer cell growth. MGDG was a potent inhibitor of replicative DNA polymerases such as alpha, delta and epsilon. MGMG inhibited the activities of all mammalian DNA polymerases including repair-related DNA polymerase beta with IC(50) values of 8.5-36 microg/mL, and the inhibition by MGMG was stronger than that by MGDG. Both MGDG and MGMG could halt the cell cycle at the G1 phase, and subsequently induced severe apoptosis. The relationship between the DNA polymerase inhibition and the cell growth effect by these glycolipids is discussed.


Biochimica et Biophysica Acta | 2002

Vitamin A-related compounds, all-trans retinal and retinoic acids, selectively inhibit activities of mammalian replicative DNA polymerases

Chikako Murakami; Masaharu Takemura; Yuichi Sugiyama; Shinji Kamisuki; Hitomi Asahara; Miho Kawasaki; Tomomi Ishidoh; Stuart Linn; Shonen Yoshida; Fumio Sugawara; Hiromi Yoshida; Kengo Sakaguchi; Yoshiyuki Mizushina

Retinoic acids, vitamin A-related compounds, are known to be inhibitors of telomerase. We found that fucoxanthin from the sea alga Petalonia bingamiae is a potent inhibitor of mammalian replicative DNA polymerases (i.e., pol alpha, delta and epsilon). Since fucoxanthin is a carotenoid (provitamin A-related) compound, we characterized the biochemical modes of vitamin A-related compounds including vitamin A and provitamin A in this report. Subsequently, we found that fucoxanthin, all-trans retinal (RAL, vitamin A aldehyde) and all-trans retinoic acid (RA, vitamin A acid) inhibited the activities of replicative DNA polymerases with IC(50) values of 18-190, 14-17 and 8-30 microM, respectively. On the other hand, all-trans retinol (vitamin A) did not influence any of the DNA polymerase activities. RA inhibited not only the activities of pol alpha, delta and epsilon with IC(50) values of 30, 28 and 8 microM, respectively, but of pol beta with an IC(50) value of 27 microM. The tested vitamin A-related compounds did not influence the activities of DNA polymerases from a higher plant, cauliflower, prokaryotic DNA polymerases, or DNA metabolic enzymes such as human immunodeficiency virus type 1 reverse transcriptase, T7 RNA polymerase and bovine deoxyribonuclease I. RAL and RA should be called selective inhibitors of mammalian DNA polymerases including telomerase, and RAL was a specific inhibitor of mammalian replicative DNA polymerases. As expected from these results in vitro, some of them could prevent the growth of NUGC-3 human gastric cancer cells, and especially RAL was a potent antineoplastic agent with an LD(50) value of 19 microM. The cells were halted at G1 phase in the cell cycle by RAL.


Journal of Virology | 2015

A Novel Tricyclic Polyketide, Vanitaracin A, Specifically Inhibits the Entry of Hepatitis B and D Viruses by Targeting Sodium Taurocholate Cotransporting Polypeptide

Manabu Kaneko; Koichi Watashi; Shinji Kamisuki; Hiroki Matsunaga; Masashi Iwamoto; Fumihiro Kawai; Hirofumi Ohashi; Senko Tsukuda; Satomi Shimura; Ryosuke Suzuki; Hideki Aizaki; Masaya Sugiyama; Sam-Yong Park; Takayoshi Ito; Naoko Ohtani; Fumio Sugawara; Yasuhito Tanaka; Masashi Mizokami; Camille Sureau; Takaji Wakita

ABSTRACT Anti-hepatitis B virus (HBV) drugs are currently limited to nucleos(t)ide analogs (NAs) and interferons. A challenge of drug development is the identification of small molecules that suppress HBV infection from new chemical sources. Here, from a fungus-derived secondary metabolite library, we identify a structurally novel tricyclic polyketide, named vanitaracin A, which specifically inhibits HBV infection. Vanitaracin A inhibited the viral entry process with a submicromolar 50% inhibitory concentration (IC50) (IC50 = 0.61 ± 0.23 μM), without evident cytotoxicity (50% cytotoxic concentration of >256 μM; selectivity index value of >419) in primary human hepatocytes. Vanitaracin A did not affect the HBV replication process. This compound was found to directly interact with the HBV entry receptor sodium taurocholate cotransporting polypeptide (NTCP) and impaired its bile acid transport activity. Consistent with this NTCP targeting, antiviral activity of vanitaracin A was observed with hepatitis D virus (HDV) but not hepatitis C virus. Importantly, vanitaracin A inhibited infection by all HBV genotypes tested (genotypes A to D) and clinically relevant NA-resistant HBV isolate. Thus, we identified a fungal metabolite, vanitaracin A, which was a potent, well-tolerated, and broadly active inhibitor of HBV and HDV entry. This compound, or its related analogs, could be part of an antiviral strategy for preventing reinfection with HBV, including clinically relevant nucleos(t)ide analog-resistant virus. IMPORTANCE For achieving better treatment and prevention of hepatitis B virus (HBV) infection, anti-HBV agents targeting a new molecule are in great demand. Although sodium taurocholate cotransporting polypeptide (NTCP) has recently been reported to be an essential host factor for HBV entry, there is a limited number of reports that identify new compounds targeting NTCP and inhibiting HBV entry. Here, from an uncharacterized chemical library, we isolated a structurally new compound, named vanitaracin A, which inhibited the process of entry of HBV and hepatitis D virus (HDV). This compound was suggested to directly interact with NTCP and inhibit its transporter activity. Importantly, vanitaracin A inhibited the entry of all HBV genotypes examined and of a clinically relevant nucleos(t)ide analog-resistant HBV isolate.


The Journal of Antibiotics | 2007

Structure-activity Relationships of Neoechinulin A Analogues with Cytoprotection against Peroxynitrite-induced PC12 Cell Death

Kuniaki Kimoto; Toshiaki Aoki; Yasushi Shibata; Shinji Kamisuki; Fumio Sugawara; Kouji Kuramochi; Atsuo Nakazaki; Susumu Kobayashi; Kenji Kuroiwa; Nobuo Watanabe; Takao Arai

Neoechinulin A, an alkaloid from Eurotium rubrum Hiji025, protected neuronal PC12 cells against cell death induced by peroxynitrite derived from SIN-1 (3-(4-morpholinyl)sydnonimine hydrochloride). In this study, we investigated the structure-activity relationships of neoechinulin A and a set of its analogues by using assays to measure anti-nitration and antioxidant activities and cytoprotection against SIN-1-induced PC12 cell death. The presence of the diketopiperazine ring was essential for both the antioxidant and anti-nitration activities of neoechinulin A derivatives. Nevertheless, a derivative lacking the diketopiperazine ring could still protect PC12 cells against SIN-1 cytotoxicity. An acyclic analogue completely lost the cytoprotective effect while retaining its antioxidant/anti-nitration activities. Pre-incubation of the cells with neoechinulin A for at least 12 hours was essential for the cells to gain SIN-1 resistance. These results suggest that neoechinulin A endows the cells with cytoprotection through a biological effect different from the apparent antioxidant/anti-nitration activities.


Journal of Medicinal Chemistry | 2011

Synthesis and Evaluation of Diarylthiazole Derivatives That Inhibit Activation of Sterol Regulatory Element-Binding Proteins

Shinji Kamisuki; Takashi Shirakawa; Akira Kugimiya; Lutfi Abu-Elheiga; Hea-Young Park Choo; Kouhei Yamada; Hiroki Shimogawa; Salih J. Wakil; Motonari Uesugi

Fatostatin, a recently discovered small molecule that inhibits activation of sterol regulatory element-binding protein (SREBP), blocks biosynthesis and accumulation of fat in obese mice. We synthesized and evaluated a series of fatostatin derivatives. Our structure-activity relationships led to the identification of N-(4-(2-(2-propylpyridin-4-yl)thiazol-4-yl)phenyl)methanesulfonamide (24, FGH10019) as the most potent druglike molecule among the analogues tested. Compound 24 has high aqueous solubility and membrane permeability and may serve as a seed molecule for further development.


Bioorganic & Medicinal Chemistry | 2011

Camptothecin (CPT) directly binds to human heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) and inhibits the hnRNP A1/topoisomerase I interaction.

Daisuke Manita; Yuzuru Toba; Yoichi Takakusagi; Yuki Matsumoto; Tomoe Kusayanagi; Kaori Takakusagi; Senko Tsukuda; Kazunori Takada; Yoshihiro Kanai; Shinji Kamisuki; Kengo Sakaguchi; Fumio Sugawara

Camptothecin (CPT) is an anti-tumor natural product that forms a ternary complex with topoisomerase I (top I) and DNA (CPT-top I-DNA). In this study, we identified the direct interaction between CPT and human heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) using the T7 phage display technology. On an avidin-agarose bead pull down assay, hnRNP A1 protein was selectively pulled down in the presence of C20-biotinylated CPT derivative (CPT-20-B) both in vitro and in vivo. The interaction was also confirmed by an analysis on a quartz-crystal microbalance (QCM) device, yielding a K(D) value of 82.7 nM. A surface plasmon resonance (SPR) analysis revealed that CPT inhibits the binding of hnRNP A1 to top I (K(D): 260 nM) in a non-competitive manner. Moreover, an in vivo drug evaluation assay using Drosophila melanogaster showed that the knockout of the hnRNP A1 homolog Hrb87F gene showed high susceptibility against 5-50 μM of CPT as compared to a wild-type strain. Such susceptibility was specific for CPT and not observed after treatment with other cytotoxic drugs. Collectively, our data suggests that CPT directly binds to hnRNP A1 and non-competitively inhibits the hnRNP A1/top I interaction in vivo. The knockout strain loses the hnRNP A1 homolog as a both CPT-binding partner and naïve brakes of top I, which enhances the formation of the CPT-top I-DNA ternary complexes and subsequently sensitizes the growth inhibitory effect of CPT in D. melanogaster.


Journal of the American Chemical Society | 2013

Total synthesis and anti-hepatitis C virus activity of MA026.

Satomi Shimura; Masahiro Ishima; Syo Nakajima; Toshitaka Fujii; Natsumi Himeno; Kentaro Ikeda; Jesus Izaguirre-Carbonell; Hiroshi Murata; Toshifumi Takeuchi; Shinji Kamisuki; Takahiro Suzuki; Kouji Kuramochi; Koichi Watashi; Susumu Kobayashi; Fumio Sugawara

The first total synthesis of MA026 and the identification of its candidate target protein for anti-hepatitis C virus activity are presented. MA026, a novel lipocyclodepsipeptide isolated from the fermentation broth of Pseudomonas sp. RtIB026, consists of a cyclodepsipeptide, a chain peptide, and an N-terminal (R)-3-hydroxydecanoic acid. The first subunit, side chain 2, was prepared by coupling fatty acid moiety 4 with tripeptide 5. The key macrocyclization of the decadepsipeptide at L-Leu(10)-D-Gln(11) provided the second subunit, cyclodepsipeptide 3. Late-stage condensation of the two key subunits and final deprotection afforded MA026. This convergent, flexible, solution-phase synthesis will be invaluable in generating MA026 derivatives for future structure-activity relationship studies. An infectious hepatitis C virus (HCV) cell culture assay revealed that MA026 suppresses HCV infection into host hepatocytes by inhibiting the entry process in a dose-dependent manner. Phage display screening followed by surface plasmon resonance (SPR) binding analyses identified claudin-1, an HCV entry receptor, as a candidate target protein of MA026.


Biochemical and Biophysical Research Communications | 2013

Specific inhibition of hepatitis C virus entry into host hepatocytes by fungi-derived sulochrin and its derivatives.

Syo Nakajima; Koichi Watashi; Shinji Kamisuki; Senko Tsukuda; Kenji Takemoto; Mami Matsuda; Ryosuke Suzuki; Hideki Aizaki; Fumio Sugawara; Takaji Wakita

Hepatitis C virus (HCV) is a major causative agent of hepatocellular carcinoma. Although various classes of anti-HCV agents have been under clinical development, most of these agents target RNA replication in the HCV life cycle. To achieve a more effective multidrug treatment, the development of new, less expensive anti-HCV agents that target a different step in the HCV life cycle is needed. We prepared an in-house natural product library consisting of compounds derived from fungal strains isolated from seaweeds, mosses, and other plants. A cell-based functional screening of the library identified sulochrin as a compound that decreased HCV infectivity in a multi-round HCV infection assay. Sulochrin inhibited HCV infection in a dose-dependent manner without any apparent cytotoxicity up to 50 μM. HCV pseudoparticle and trans-complemented particle assays suggested that this compound inhibited the entry step in the HCV life cycle. Sulochrin showed anti-HCV activities to multiple HCV genotypes 1a, 1b, and 2a. Co-treatment of sulochrin with interferon or a protease inhibitor telaprevir synergistically augmented their anti-HCV effects. Derivative analysis revealed anti-HCV compounds with higher potencies (IC50<5 μM). This is the first report showing an antiviral activity of methoxybenzoate derivatives. Thus, sulochrin derivatives are anti-HCV lead compounds with a new mode of action.


Plant and Cell Physiology | 2009

Chlorogenic Acid Facilitates Root Hair Formation in Lettuce Seedlings

Megumi Narukawa; Kaori Kanbara; Yuji Tominaga; Yurika Aitani; Kazumasa Fukuda; Takaaki Kodama; Noriko Murayama; Yoshiki Nara; Takashi Arai; Masae Konno; Shinji Kamisuki; Fumio Sugawara; Masako Iwai; Yasunori Inoue

Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. A low pH (pH 4) medium induced root hair formation in lettuce (Lactuca sativa L.) seedlings, and the decapitation of shoots inhibited root hair formation. The addition of shoot extract to the medium restored root hair formation in the decapitated lettuce seedlings. These results suggest that factors essential to the formation of root hairs may be present in the shoot. We purified one factor from the shoot that facilitates root hair formation. This factor was identified as chlorogenic acid (CGA), a common polyphenol in higher plants. The presence of exogenous CGA in the medium induced root hair formation in decapitated lettuce seedlings at pH 4.0 and in intact lettuce seedlings at pH 6.0. The optimum concentration of CGA for root hair formation was identified as 10(-5) M. Decapitation of the shoots reduced the CGA content in the roots to approximately one-third that in intact plants. Application of the CGA biosynthesis inhibitor L-alpha-aminooxy-beta-phenylpropionic acid (AOPP, 10(-6) M) to intact seedlings grown at pH 4.0 reduced both the CGA content of the roots and the total amount of root hairs. The addition of exogenous CGA restored root hair formation in intact seedlings treated with AOPP. These results suggest that CGA is essential for root hair formation in lettuce seedlings.

Collaboration


Dive into the Shinji Kamisuki's collaboration.

Top Co-Authors

Avatar

Fumio Sugawara

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kengo Sakaguchi

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kouji Kuramochi

Kyoto Prefectural University

View shared research outputs
Top Co-Authors

Avatar

Toshifumi Takeuchi

Tokyo University of Science

View shared research outputs
Top Co-Authors

Avatar

Senko Tsukuda

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoe Kusayanagi

Tokyo University of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge