Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shinji Kataoka is active.

Publication


Featured researches published by Shinji Kataoka.


Oral Microbiology and Immunology | 2007

Identification of the genes associated with a virulent strain of Porphyromonas gingivalis using the subtractive hybridization technique

M. Tachibana-Ono; Akihiro Yoshida; Shinji Kataoka; Toshihiro Ansai; Yasuyuki Shintani; Yusuke Takahashi; Kuniaki Toyoshima; Tadamichi Takehara

BACKGROUND/AIMS Porphyromonas gingivalis, a major etiological organism implicated in periodontal disease, can be classified into virulent and avirulent strains. Our aim was to identify a gene for the virulence of P. gingivalis. METHODS The subtractive hybridization technique was employed to identify the genes specific to P. gingivalis W83, a virulent strain. In this study, P. gingivalis W83 was used as the tester strain, and P. gingivalis ATCC 33277 was the driver strain. The prevalence of W83-specific genes was determined by Southern blot analysis of several P. gingivalis strains. RESULTS We obtained 575 colonies using the subtractive hybridization technique. From among these, 26 DNA fragments were subjected to a homology search using the BLAST program. Compared with strain ATCC 33277, strain W83 contained 12 unique clones. The specificities of the isolated DNA fragments were analyzed among four P. gingivalis strains by Southern blot analysis. Five genes showed specificity for strain W83 compared with strain ATCC 33277. All five genes were also identified in strain W50. CONCLUSIONS The subtractive hybridization technique was effective in screening the two strains for specific DNA sequences, some of which might be responsible for determining virulence. The results suggested that several genes specific to strain W83 were associated with its virulence. Further analysis of these DNA fragments will provide important information on the pathogenesis of virulent P. gingivalis strains.


Chemical Senses | 2014

Expression of GAD67 and Dlx5 in the Taste Buds of Mice Genetically Lacking Mash1

Ayae Kito-Shingaki; Yuji Seta; Takashi Toyono; Shinji Kataoka; Yasuaki Kakinoki; Yuchio Yanagawa; Kuniaki Toyoshima

It has been reported that a subset of type III taste cells express glutamate decarboxylase (GAD)67, which is a molecule that synthesizes gamma-aminobutyric acid (GABA), and that Mash1 could be a potential regulator of the development of GABAnergic neurons via Dlx transcription factors in the central nervous system. In this study, we investigated the expression of GAD67 and Dlx in the embryonic taste buds of the soft palate and circumvallate papilla using Mash1 knockout (KO)/GAD67-GFP knock-in mice. In the wild-type animal, a subset of type III taste cells contained GAD67 in the taste buds of the soft palate and the developing circumvallate papilla, whereas GAD67-expressing taste bud cells were missing from Mash1 KO mice. A subset of type III cells expressed mRNA for Dlx5 in the wild-type animals, whereas Dlx5-expressing cells were not evident in the apical part of the circumvallate papilla and taste buds in the soft palate of Mash1 KO mice. Our results suggest that Mash1 is required for the expression of GAD67 and Dlx5 in taste bud cells.


Neuropeptides | 2013

Hemokinin-1 competitively inhibits substance P-induced stimulation of osteoclast formation and function

Aya Fukuda; Tetsuya Goto; Kayoko N. Kuroishi; Kaori Gunjigake; Shinji Kataoka; Shigeru Kobayashi; Kazunori Yamaguchi

Hemokinin-1 (HK-1) is a novel member of the tachykinin family that is encoded by preprotachykinin 4 (TAC4) and shares the neurokinin-1 receptor (NK1-R) with substance P (SP). Although HK-1 is thought to be an endogenous peripheral SP-like endocrine or paracrine molecule in locations where SP is not expressed, neither the distribution of HK-1 in the maxillofacial area nor the role HK-1 in bone tissue have been examined. In this study, we investigated the distribution of HK-1 in trigeminal ganglion (TG) and maxillary bone, and assessed the expression of HK-1 during osteoclast differentiation. In vivo, rat molars were loaded for 5 days using the Waldo method. In vitro, rat osteoclast-like cells were induced from bone marrow cells. HK-1 distribution and expression were examined by immunofluorescence staining and reverse transcription polymerase chain reaction (RT-PCR). In vivo, HK-1 was localized in rat TG neurons; however, the number of HK-1-positive neurons was less than that of SP-positive neurons. In the maxillary bone, nerve fibers, blood vessels, and osteocytes were immunopositive for HK-1. Furthermore, HK-1-positive immunoreactivity was found in osteoclasts on the pressure side. In vitro, PCR showed that TAC4 and NK1-R mRNA was expressed in osteoclasts as well as in bone marrow cells. Although SP (10⁻⁷ M) treatment led to an increased number of osteoclasts, HK-1 (10⁻⁷ M) treatment did not. The numbers of biotin-labeled HK-1 peptides bound osteoclasts significantly decreased upon incubation with unlabeled SP and biotin-labeled HK-1 compared with biotin-labeled HK-1 alone. These results suggest that HK-1 may not stimulate the differentiation and function of osteoclasts. SP-stimulated osteoclast formation is competitively regulated by peripheral HK-1 through NK1-Rs.


Archives of Oral Biology | 2016

Asporin in compressed periodontal ligament cells inhibits bone formation

Masae Ueda; Tetsuya Goto; Kayoko N. Kuroishi; Kaori Gunjigake; Erina Ikeda; Shinji Kataoka; Mitsushiro Nakatomi; Takashi Toyono; Yuji Seta; Tatsuo Kawamoto

OBJECTIVE During orthodontic tooth movement, bone resorption and inhibition of bone formation occur on the compressed side, thereby preventing ankylosis. Periodontal ligament (PDL) cells control bone metabolism and inhibition of bone formation on the compressed side by secreting bone-formation inhibitory factors such as asporin (ASPN) or sclerostin (encoded by SOST). The aim of this study was to identify the inhibitory factors of bone formation in PDL cells. DESIGN In vitro, the changes in expression of ASPN and SOST and subsequent protein release in human PDL (hPDL) cells were assessed by semi-quantitative polymerase chain reaction (PCR), real-time PCR, and immunofluorescence in hPDL cells subjected to centrifugal force using a centrifuge (45, 90, 135, and 160 × g). In vivo, we applied a compressive force using the Waldo method in rats, and examined the distribution of ASPN or sclerostin by immunohistochemistry. RESULTS In vitro, hPDL cells subjected to 90 × g for 24h demonstrated upregulated ASPN and downregulated SOST expressions, which were confirmed by immunofluorescent staining. In addition, the formation of mineralized tissue by human osteoblasts was significantly inhibited by the addition of medium from hPDL cells cultured during compressive force as well as the addition of equivalent amounts of ASPN peptide. In vivo, asporin-positive immunoreactive PDL cells and osteoclasts were found on the compressed side, whereas few sclerostin-positive PDL cells were observed. CONCLUSIONS PDL cells subjected to an optimal compressive force induce the expression and release of ASPN, which inhibits bone formation during orthodontic tooth movement on the compressed side.


Neuropeptides | 2014

Expression of neuropeptide receptor mRNA during osteoblastic differentiation of mouse iPS cells

Satomi Nagao; Tetsuya Goto; Shinji Kataoka; Takashi Toyono; Takaaki Joujima; Hiroshi Egusa; Hirofumi Yatani; Shigeru Kobayashi; Kenshi Maki

Various studies have shown a relationship between nerves and bones. Recent evidence suggests that both sensory and sympathetic nerves affect bone metabolism; however, little is known about how neuropeptides are involved in the differentiation of pluripotent stem cells into osteoblastic (OB) cells. To evaluate the putative effects of neuropeptides during the differentiation of mouse induced pluripotent stem (iPS) cells into calcified tissue-forming OB cells, we investigated the expression patterns of neuropeptide receptors at each differentiation stage. Mouse iPS cells were seeded onto feeder cells and then transferred to low-attachment culture dishes to form embryoid bodies (EBs). EBs were cultured for 4 weeks in osteoblastic differentiation medium. The expression of α1-adrenergic receptor (AR), α2-AR, β2-AR, neuropeptide Y1 receptor (NPY1-R), neuropeptide Y2 receptor (NPY2-R), calcitonin gene-related protein receptor (CGRP-R), and neurokinin 1-R (NK1-R) was assessed by reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR. Among these neuropeptide receptors, CGRP-R and β2-AR were expressed at all stages of cell differentiation, including the iPS cell stage, with peak expression occurring at the early osteoblastic differentiation stage. Another sensory nervous system receptor, NK1-R, was expressed mainly in the late osteoblastic differentiation stage. Furthermore, CGRP-R mRNA showed an additional small peak corresponding to EBs cultured for 3 days, suggesting that EBs may be affected by serum CGRP. These data suggest that the sensory nervous system receptor CGRP-R and the sympathetic nervous system receptor β2-AR may be involved in the differentiation of iPS cells into the osteoblastic lineage. It follows from these findings that CGRP and β2-AR may regulate cell differentiation in the iPS and EB stages, and that each neuropeptide has an optimal period of influence during the differentiation process.


Acta Histochemica Et Cytochemica | 2013

Nerve Growth Factor Involves Mutual Interaction between Neurons and Satellite Glial Cells in the Rat Trigeminal Ganglion

Sayaka Kurata; Tetsuya Goto; Kaori Gunjigake; Shinji Kataoka; Kayoko N. Kuroishi; Kentaro Ono; Takashi Toyono; Shigeru Kobayashi; Kazunori Yamaguchi

Nerve growth factor (NGF) plays a critical role in the trigeminal ganglion (TG) following peripheral nerve damage in the oral region. Although neurons in the TG are surrounded by satellite glial cells (SGCs) that passively support neural function, little is known regarding NGF expression and its interactions with TG neurons and SGCs. This study was performed to examine the expression of NGF in TG neurons and SGCs with nerve damage by experimental tooth movement. An elastic band was inserted between the first and second upper molars of rats. The TG was removed at 0–7 days after tooth movement. Using in situ hybridization, NGF mRNA was expressed in both neurons and SGCs. Immunostaining for NGF demonstrated that during tooth movement the number of NGF-immunoreactive SGCs increased significantly as compared with baseline and reached maximum levels at day 3. Furthermore, the administration of the gap junction inhibitor carbenoxolone at the TG during tooth movement significantly decreased the number of NGF-immunoreactive SGCs. These results suggested that peripheral nerve damage may induce signal transduction from neurons to SGCs via gap junctions, inducing NGF expression in SGCs around neurons, and released NGF may be involved in the restoration of damaged neurons.


Gene Expression Patterns | 2018

Hey1 and Hey2 are differently expressed during mouse tooth development

Kotono Kibe; Mitsushiro Nakatomi; Shinji Kataoka; Takashi Toyono; Yuji Seta

The Hey family (also known as Chf, Herp, Hesr, and Hrt) is a set of Hairy/Enhancer of Split-related basic helix-loop-helix type transcription factors. Hey1, Hey2, and HeyL have been identified in mammals. Although Hey proteins are known to regulate cardiovascular development, muscle homeostasis, osteogenesis, neurogenesis, and oncogenesis, their roles in tooth development have been largely obscure. Therefore, this study aimed to clarify detailed spatiotemporal expression patterns of Hey1 and Hey2 in developing molars and incisors of mice by section in situ hybridization. Hey1 and Hey2 were not significantly expressed in tooth germs at epithelial thickening, bud, and cap stages during molar development. In the dental epithelium in molars at the bell stage and incisors, Hey2 transcripts were restricted to the undifferentiated inner enamel epithelium and down-regulated in preameloblasts and ameloblasts. On the other hand, Hey1 was mainly expressed in preameloblasts and down-regulated in differentiated ameloblasts. Both genes were not significantly expressed in other dental epithelial tissues, including the outer enamel epithelium, stellate reticulum, and stratum intermedium cells. In the dental mesenchyme, Hey1 was intensely transcribed in the subodontoblastic layer of the dental pulp in both molars and incisors, whereas Hey2 was barely detectable in mesenchymal components. Our data implied that Hey2 function is restricted to transient amplifying cells of the ameloblast cell lineage and that Hey1 plays a role in the composition of the subodontoblastic layer, in addition to ameloblast differentiation. These findings provide novel clues for the better understanding of tooth development.


Acta Histochemica Et Cytochemica | 2016

Expression of Vesicular Nucleotide Transporter in Rat Odontoblasts

Erina Ikeda; Tetsuya Goto; Kaori Gunjigake; Kayoko N. Kuroishi; Masae Ueda; Shinji Kataoka; Takashi Toyono; Mitsushiro Nakatomi; Yuji Seta; Chiaki Kitamura; Tatsuji Nishihara; Tatsuo Kawamoto

Several theories have been proposed regarding pain transmission mechanisms in tooth. However, the exact signaling mechanism from odontoblasts to pulp nerves remains to be clarified. Recently, ATP-associated pain transmission has been reported, but it is unclear whether ATP is involved in tooth pain transmission. In the present study, we focused on the vesicular nucleotide transporter (VNUT), a transporter of ATP into vesicles, and examined whether VNUT was involved in ATP release from odontoblasts. We examined the expression of VNUT in rat pulp by RT-PCR and immunostaining. ATP release from cultured odontoblast-like cells with heat stimulation was evaluated using ATP luciferase methods. VNUT was expressed in pulp tissue, and the distribution of VNUT-immunopositive vesicles was confirmed in odontoblasts. In odontoblasts, some VNUT-immunopositive vesicles were colocalized with membrane fusion proteins. Additionally P2X3, an ATP receptor, immunopositive axons were distributed between odontoblasts. The ATP release by thermal stimulation from odontoblast-like cells was inhibited by the addition of siRNA for VNUT. These findings suggest that cytosolic ATP is transported by VNUT and that the ATP in the vesicles is then released from odontoblasts to ATP receptors on axons. ATP vesicle transport in odontoblasts seems to be a key mechanism for signal transduction from odontoblasts to axons in the pulp.


Cell and Tissue Research | 2013

Expression of synaptogyrin-1 in T1R2-expressing type II taste cells and type III taste cells of rat circumvallate taste buds

Takeshi Kotani; Takashi Toyono; Yuji Seta; Ayae Kitou; Shinji Kataoka; Kuniaki Toyoshima

Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca2+-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cβ2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.


Anatomical Science International | 2018

Mash1-expressing cells could differentiate to type III cells in adult mouse taste buds

Hiroki Takagi; Yuji Seta; Shinji Kataoka; Mitsushiro Nakatomi; Takashi Toyono; Tatsuo Kawamoto

The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system. We found that the cells expressing type III cell markers—aromatic L-amino acid decarboxylase (AADC), carbonic anhydrase 4 (CA4), glutamate decarboxylase 67 (GAD67), neural cell adhesion molecule (NCAM), and synaptosomal-associated protein 25 (SNAP25)—were significantly reduced in the circumvallate taste buds after the administration of tamoxifen. However, gustducin and phospholipase C beta2 (PLC beta2)—markers of type II taste bud cells—were not significantly changed in the circumvallate taste buds after the administration of tamoxifen. These results suggest that Mash1-positive cells could be differentiated to type III cells, not type II cells in the taste buds.

Collaboration


Dive into the Shinji Kataoka's collaboration.

Top Co-Authors

Avatar

Takashi Toyono

Kyushu Dental University

View shared research outputs
Top Co-Authors

Avatar

Yuji Seta

Kyushu Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tetsuya Goto

Kyushu Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erina Ikeda

Kyushu Dental University

View shared research outputs
Researchain Logo
Decentralizing Knowledge