Shinji Kusakawa
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shinji Kusakawa.
Journal of Bioscience and Bioengineering | 2011
Kazuaki Nakamura; Reiko Mizutani; Atsushi Sanbe; Shin Enosawa; Mureo Kasahara; Atsuko Nakagawa; Yoko Ejiri; Norie Murayama; Yuki Miyamoto; Tomohiro Torii; Shinji Kusakawa; Junji Yamauchi; Motohiro Fukuda; Hiroshi Yamazaki; Akito Tanoue
A micro-space cell culture system was recently developed in which cells such as hepatocytes can be cultured and formed into a multicellular three-dimensional (3D) architecture. In this study, we assessed the performance of HepG2 cells cultured in this micro-space cell culture system in a drug toxicity test, and evaluated the effects of micro-space culture on their hepatocyte-specific functions. The micro-space cell culture facilitated the formation of 3D HepG2 cell architecture. HepG2 cells cultured in a micro-space culture plate exhibited increased albumin secretion and enhanced mRNA expression levels of cytochrome P450 (CYP) enzyme compared to those cultured in a monolayer culture. When the cells were exposed to acetaminophen, a hepatotoxic drug, the damage to the HepG2 cells grown in micro-space culture was greater than the damage to the HepG2 cells grown in monolayer culture. In addition, human primary hepatocytes grown in micro-space culture also exhibited increased albumin secretion, enhanced CYP mRNA expression levels and increased sensitivity to acetaminophen compared to those grown in monolayer culture. These results suggest that this micro-space culture method enhances the hepatocyte-specific functions of hepatocytes, including drug-metabolizing enzyme activities, making hepatocytes grown in the micro-space culture system a useful tool for evaluating drug toxicity in vitro.
Journal of Neuroscience Research | 2010
Junji Yamauchi; Tomohiro Torii; Shinji Kusakawa; Atsushi Sanbe; Kazuaki Nakamura; Shou Takashima; Hajime Hamasaki; Shogo Kawaguchi; Yuki Miyamoto; Akito Tanoue
Charcot‐Marie‐Tooth (CMT) disease is the most frequent peripheral neuropathy affecting the Schwann cells and neurons. CMT disease type 2 (CMT2) neuropathies are characterized by peripheral nerve aberrance. Four missense mutations of Rab7, a small GTPase of the Rab family involved in intracellular vesicular trafficking, are associated with the CMT2B phenotype. Despite a growing body of evidence concerning the gene structures responsible for genetically heterogenous CMT2B and other CMT2 neuropathies, little is known about the in vitro neuropathy model and how CMT2B‐associated mutation‐caused aberrant neuritogenesis is properly reversed. Here, we show that valproic acid (VPA), a classical mood‐stabilizing drug, improves defective neurite formation in N1E‐115 neuroblastoma cells regardless of which CMT2B‐associated Rab7 mutant protein is expressed. The effect is mediated by c‐Jun N‐terminal kinase (JNK) signaling, but not by deacetylase inhibition activity of VPA itself. Furthermore, VPA has similar effects in dorsal root ganglion (DRG) neurons expressing any of the four mutant Rab7 proteins. Thus, VPA has a previously unknown potential to improve defective neuritogenesis associated with CMT2B in vitro, indicating that JNK should be a potential therapeutic target for treatments aimed at improving neuritogenesis.
The Journal of Neuroscience | 2011
Junji Yamauchi; Yuki Miyamoto; Hajime Hamasaki; Atsushi Sanbe; Shinji Kusakawa; Akane Nakamura; Hideki Tsumura; Masahiro Maeda; Noriko Nemoto; Katsumasa Kawahara; Tomohiro Torii; Akito Tanoue
In development of the peripheral nervous system, Schwann cells proliferate, migrate, and ultimately differentiate to form myelin sheath. In all of the myelination stages, Schwann cells continuously undergo morphological changes; however, little is known about their underlying molecular mechanisms. We previously cloned the dock7 gene encoding the atypical Rho family guanine-nucleotide exchange factor (GEF) and reported the positive role of Dock7, the target Rho GTPases Rac/Cdc42, and the downstream c-Jun N-terminal kinase in Schwann cell migration (Yamauchi et al., 2008). We investigated the role of Dock7 in Schwann cell differentiation and myelination. Knockdown of Dock7 by the specific small interfering (si)RNA in primary Schwann cells promotes dibutyryl cAMP-induced morphological differentiation, indicating the negative role of Dock7 in Schwann cell differentiation. It also results in a shorter duration of activation of Rac/Cdc42 and JNK, which is the negative regulator of myelination, and the earlier activation of Rho and Rho-kinase, which is the positive regulator of myelination. To obtain the in vivo evidence, we generated Dock7 short hairpin (sh)RNA transgenic mice. They exhibited a decreased expression of Dock7 in the sciatic nerves and enhanced myelin thickness, consistent with in vitro observation. The effects of the in vivo knockdown on the signals to Rho GTPases are similar to those of the in vitro knockdown. Collectively, the signaling through Dock7 negatively regulates Schwann cell differentiation and the onset of myelination, demonstrating the unexpected role of Dock7 in the interplay between Schwann cell migration and myelination.
Life Sciences | 2008
Shinji Kusakawa; Junji Yamauchi; Yuki Miyamoto; Atsushi Sanbe; Akito Tanoue
AIMS Fluoxetine is an antidepressant drug of the selective serotonin reuptake inhibitor (SSRI) class, which is commonly prescribed to treat a wide spectrum of mood disorders including depression during pregnancy and lactation. Recent studies have proposed a possible association between an increase in major malformations and the maternal use of SSRI drugs during pregnancy. Here, we assess the effects of fluoxetine using a mouse ES cell differentiation system to clarify the possible association. MAIN METHODS Using a mouse embryonic stem (ES) cell differentiation system, we evaluated cell viability and differentiation affected by fluoxetine. KEY FINDINGS Fluoxetine adversely affected cell viability and differentiation from undifferentiated ES cells to cardiomyocytes in a dose-dependent manner. The IC50 values of fluoxetine for ES cells and NIH-3T3 fibroblasts were 1.79 microM and 4.67 microM, respectively, and the ID50 value for ES cells was 3.79 microM. These results indicate that fluoxetine has strong toxicity evaluated by a mouse embryonic stem cell test (EST). Analysis of tissue-specific markers revealed that fluoxetine potently inhibits mesodermal development, although it promotes ectodermal differentiation in a lineage-specific manner. SIGNIFICANCE These results using the in vitro ES cell assay system suggest a possible relationship between the teratogenicity of fluoxetine and its molecular mechanism.
Experimental Cell Research | 2009
Junji Yamauchi; Yuki Miyamoto; Tomohiro Torii; Reiko Mizutani; Kazuaki Nakamura; Atsushi Sanbe; Hiroshi Koide; Shinji Kusakawa; Akito Tanoue
The mood-stabilizing agent valproic acid (VPA) potently promotes neuronal differentiation. As yet, however, little is known about the underlying molecular mechanism. Here, we show that VPA upregulates cytohesin-2 and mediates neurite outgrowth in N1E-115 neuroblastoma cells. Cytohesin-2 is the guanine-nucleotide exchange factor (GEF) for small GTPases of the Arf family; it regulates many aspects of cellular functions including morphological changes. Treatment with the specific cytohesin family inhibitor SecinH3 or knockdown of cytohesin-2 with its siRNA results in blunted induction of neurite outgrowth in N1E-115 cells. The outgrowth is specifically inhibited by siRNA knockdown of Arf6, but not by that of Arf1. Furthermore, VPA upregulates Arl4D, an Arf-like small GTPase that has recently been identified as the regulator that binds to cytohesin-2. Arl4D knockdown displays an inhibitory effect on neurite outgrowth resulting from VPA, while expression of constitutively active Arl4D induces outgrowth. We also demonstrate that the addition of cell-permeable peptide, coupling the cytohesin-2-binding region of Arl4D into cells, reduces the effect of VPA. Thus, Arl4D is a previously unknown regulator of neurite formation through cytohesin-2 and Arf6, providing another example that the functional interaction of two different small GTPases controls an important cellular function.
European Journal of Pharmacology | 2009
Kazuaki Nakamura; Toshinori Aoyagi; Masami Hiroyama; Shinji Kusakawa; Reiko Mizutani; Atsushi Sanbe; Junji Yamauchi; Masazumi Kamohara; Kazuhiro Momose; Akito Tanoue
[Arg(8)]-vasopressin (AVP) is involved in the regulation of glucose homeostasis via vasopressin V(1A) and vasopressin V(1B) receptor. Our previous studies have demonstrated that vasopressin V(1A) receptor deficient (V(1A)R(-/-)) mice exhibited hyperglycemia, vasopressin V(1B) receptor deficient (V(1B)R(-/-)) mice, in contrast, exhibited hypoglycemia with hypoinsulinemia. These findings indicate that vasopressin V(1A) receptor deficiency results in decreased insulin sensitivity, whereas vasopressin V(1B) receptor deficiency results in increased insulin sensitivity. In our previous and present studies, we used the glucose tolerance test to investigate glucose tolerance in mutant mice, lacking either the vasopressin V(1A) receptor, the vasopressin V(1B) receptor, or both receptors, that were kept on a high-fat diet. Glucose and insulin levels were lower in V(1B)R(-/-) mice than in wild type (WT) mice when both groups were fed the high-fat diet, which indicates that the insulin sensitivity of the V(1B)R(-/-) mice was enhanced. V(1A)R(-/-) mice on the high-fat diet, on the other hand, exhibited overt obesity, along with an impaired glucose tolerance, while WT mice on the high-fat diet did not. Next, in order to assess the effect of vasopressin V(1B) receptor deficiency on the development of glucose intolerance caused by vasopressin V(1A) receptor deficiency, we generated mice that were deficient for both vasopressin V(1A) receptor and vasopressin V(1B) receptor (V(1AB)R(-/-)), fed them a high-fat diet, and examined their glucose tolerances using the glucose tolerance test. Glucose tolerance was impaired in V(1AB)R(-/-) mice, suggesting that the effects of vasopressin V(1B) receptor deficiency could not influence the development of hyperglycemia promoted by vasopressin V(1A) receptor deficiency, and that blockade of both receptors could lead to impaired glucose tolerance.
European Journal of Pharmacology | 2009
Toshinori Aoyagi; Shinji Kusakawa; Atsushi Sanbe; Masami Hiroyama; Yoko Fujiwara; Junji Yamauchi; Akito Tanoue
Food intake is regulated by various factors such as neuropeptide Y. Neuropeptide Y potently induces an increase in food intake, and simultaneously stimulates arginine-vasopressin (AVP) secretion in the brain. Recently, we reported that V(1A) vasopressin receptor-deficient (V(1A)R(-/-)) mice exhibited altered daily food intake accompanied with hyperglycemia and hyperleptinemia. Here, we further study the involvement of the AVP/V(1A) receptor in the appetite regulation of neuropeptide Y with V(1A)R(-/-) mice and antagonists for the AVP receptor. The intra-cerebral-ventricle administration of neuropeptide Y induced greater food consumption in V(1A)R(-/-) mice than wild-type (WT) mice, whereas an anorexigenic effect of leptin was not different between the two groups. This finding suggests that the orexigenic effect of neuropeptide Y was enhanced in V(1A)R(-/-) mice, leading to the increased food intake in response to the neuropeptide Y stimulation. In addition, the neuropeptide Y-induced orexigenic effect was enhanced by co-administration of OPC-21268, an antagonist for the V(1A) vasopressin receptor, into the cerebral ventricle in WT mice, whereas the neuropeptide Y-induced orexigenic effect was not affected by co-administration of SSR-149415, an antagonist for the V(1B) vasopressin receptor. These results indicate that AVP could suppress the neuropeptide Y-induced orexigenic effect via the V(1A) vasopressin receptor, and that blockade or inhibition of the AVP/V(1A) receptor signal resulted in the enhanced neuropeptide Y-induced orexigenic effect. Thus, we show that the AVP/V(1A) receptor is involved in appetite regulation as an anorexigenic factor for the neuropeptide Y-induced orexigenic effect.
Cellular Signalling | 2009
Reiko Mizutani; Junji Yamauchi; Shinji Kusakawa; Kazuaki Nakamura; Atsushi Sanbe; Tomohiro Torii; Yuki Miyamoto; Akito Tanoue
Lithium, a drug in the treatment of bipolar disorder, modulates many aspects of neuronal developmental processes such as neurogenesis, survival, and neuritogenesis. However, the underlying mechanism still remains to be understood. Here, we show that lithium upregulates the expression of sorting nexin 3 (SNX3), one of the Phox (PX) domain-containing proteins involved in endosomal sorting, and regulates neurite outgrowth in mouse N1E-115 neuroblastoma cells. The inhibition of SNX3 function by its knockdown decreases lithium-induced outgrowth of neurites. Transfection of the full-length SNX3 construct into cells facilitates the outgrowth. We also find that the C-terminus, as well as the PX domain, of SNX3 has a functional binding sequence with phosphatidylinositol monophosphates. Transfection of the C-terminal deletion mutant or only the C-terminus does not have an effect on the outgrowth. These results suggest that SNX3, a protein upregulated by lithium, is an as yet unknown regulator of neurite formation and that it contains another functional phosphatidylinositol phosphate-binding region at the C-terminus.
Journal of Neuroscience Research | 2010
Shinji Kusakawa; Kazuaki Nakamura; Yuki Miyamoto; Atsushi Sanbe; Tomohiro Torii; Junji Yamauchi; Akito Tanoue
Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed for treatment of mood disorders and depression, even during pregnancy and lactation. SSRIs are thought to be much safer than tricyclic antidepressants, with a low risk of embryonic toxicity. Several recent studies, however, have reported that fetal exposure to SSRIs increases the risk of adverse effects during fetal and neonatal development. This is consistent with our previous finding that fluoxetine, a prototypical SSRI, profoundly affected the viability of cultured embryonic stem (ES) cells as well as their ability to differentiate into cardiomyocytes. Furthermore, we found that fluoxetine induced fluctuations in ectodermal marker gene expression during ES cell differentiation, which suggests that fluoxetine may affect neural development. In the present study, we investigated the effects of fluoxetine on the process of differentiation from ES cells into neural cells using the stromal cell‐derived inducing activity (SDIA) method. Fluoxetine treatment was found to enhance the expression of glial marker genes following neural differentiation, as observed by immunocytochemical analysis or quantitative RT‐PCR. The promoter activity of glial marker genes was also significantly enhanced when cells were treated with fluoxetine, as observed by luciferase reporter assay. The expression of neuronal markers during ES cell differentiation into neural cells, on the other hand, was inhibited by fluoxetine treatment. In addition, FACS analysis revealed an increased population of glial cells in the differentiating ES cells treated with fluoxetine. These results suggest that fluoxetine could facilitate the differentiation of mouse ES cells into glial cell lineage, which may affect fetal neural development.
Gene Expression Patterns | 2011
Reiko Mizutani; Kazuaki Nakamura; Shigetoshi Yokoyama; Atsushi Sanbe; Shinji Kusakawa; Yuki Miyamoto; Tomohiro Torii; Hiroshi Asahara; Haruo Okado; Junji Yamauchi; Akito Tanoue
We previously reported that sorting nexin 3 (SNX3), a protein belonging to the sorting nexin family, regulates neurite outgrowth in mouse N1E-115 neuroblastoma cells. The snx3 gene is disrupted in patients with microcephaly, microphthalmia, ectrodactyly, and prognathism (MMEP) and mental retardation, demonstrating that SNX3 plays an important role in the genesis of these organs during development. The present study was designed to determine the expression pattern of snx3 mRNA, particularly in the mouse central nervous system (CNS), from the embryonic stage to adulthood. Whole mount in situ hybridization of embryonic day (E) 9.5 and 10.5 mouse embryos revealed strong positive signals for snx3 mRNA in the forebrain, pharyngeal arches, eyes, and limb buds. In situ hybridization analyses of embryonic and neonatal brain sections revealed that snx3 mRNA is mainly expressed in the cerebral cortex, hippocampus, piriform cortex, cerebellum, and spinal cord. In adulthood, the expression of snx3 mRNA is observed in the cerebral cortex, hippocampus, piriform cortex, and cerebellar neurons. Thus, snx3 mRNA is expressed during neural development and in adult neural tissues, suggesting that SNX3 may play an important role in the development and function of the CNS.