Shinjiro Amano
Kurume University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shinjiro Amano.
Journal of Biological Chemistry | 2002
Yamagishi S; Yosuke Inagaki; Tamami Okamoto; Shinjiro Amano; Kohachiro Koga; Masayoshi Takeuchi; Zenji Makita
Advanced glycation end products (AGE) have been implicated in the pathogenesis of glomerulosclerosis in diabetes. However, their involvement in the development of the early phase of diabetic nephropathy has not been fully elucidated. We investigated the effects of AGE on growth and on vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) expression in human cultured mesangial cells. We prepared three immunochemically distinct AGE by incubating bovine serum albumin (BSA) with glucose, glyceraldehyde, or glycolaldehyde. When human mesangial cells were cultured with various types of AGE-BSA, viable cell numbers as well as DNA syntheses were significantly decreased. All of the AGE-BSA were found to significantly increase p53 and Bax protein accumulations and subsequently induce apoptotic cell death in mesangial cells. An antioxidant, N-acetylcysteine, significantly prevented the AGE-induced apoptotic cell death in mesangial cells. Human mesangial cells stimulated prostacyclin production by co-cultured glomerular endothelial cells. Furthermore, various types of AGE-BSA were found to up-regulate the levels of mRNAs for VEGF and stimulate the secretion of VEGF and MCP-1 proteins in mesangial cells. The results suggest that AGE disturbed glomerular homeostasis by inducing apoptotic cell death in mesangial cells and elicited hyperfiltration and microalbuminuria by stimulating the secretion of VEGF and MCP-1 proteins, thereby being involved in the pathogenesis of the early phase of diabetic nephropathy.
The FASEB Journal | 2002
Tamami Okamoto; Sho-ichi Yamagishi; Yosuke Inagaki; Shinjiro Amano; Kohachiro Koga; Riichiro Abe; Masayoshi Takeuchi; Shigeaki Ohno; Akihiko Yoshimura; Zenji Makita
We previously have found that advanced glycation end products (AGE), senescent macroproteins formed at an accelerated rate in diabetes, arise in vivo not only from glucose but also from reducing sugars. Furthermore, we recently have shown that glyceraldehyde‐ and glycolaldehyde‐derived AGE (glycer‐ and glycol‐AGE) are mainly involved in loss of pericytes, the earliest histopathological hallmark of diabetic retinopathy. However, the effects of these AGE proteins on angiogenesis, another vascular derangement in diabetic retinopathy, remain to be elucidated. In this study, we investigated whether these AGE proteins elicit changes in cultured endothelial cells that are associated with angiogenesis. When human skin microvascular endothelial cells (EC) were cultured with glycer‐AGE or glycol‐AGE, growth and tube formation of EC, the key steps of angiogenesis, were significantly stimulated. The AGE‐induced growth stimulation was significantly enhanced in AGE receptor (RAGE)‐overexpressed EC. Furthermore, AGE increased transcriptional activity of nuclear factor‐κB (NF‐κB) and activator protein‐1 (AP‐1) and then up‐regulated mRNA levels of vascular endothelial growth factor (VEGF) and angiopoietin‐2 (Ang‐2) in EC. Cerivastatin, a hydroxymethylglutaryl CoA reductase inhibitor; pyrrolidinedithiocarbamate; or curcumin was found to completely prevent the AGE‐induced increase in NF–κB and AP‐1 activity, VEGF mRNA up‐regulation, and the resultant increase in DNA synthesis in microvascular EC. These results suggest that the AGE‐RAGE interaction elicited angiogenesis through the transcriptional activation of the VEGF gene via NF‐κB and AP‐1 factors. By blocking AGE‐RAGE signaling pathways, cerivastatin might be a promising remedy for treating patients with proliferative diabetic retinopathy.
Biochemical and Biophysical Research Communications | 2002
Sho-ichi Yamagishi; Yosuke Inagaki; Shinjiro Amano; Tamami Okamoto; Masayoshi Takeuchi; Zenji Makita
Pigment epithelium-derived factor (PEDF) has recently been shown to be the most potent inhibitor of angiogenesis in the mammalian eye, suggesting that loss of PEDF is involved in the pathogenesis of proliferative diabetic retinopathy. However, a protective role for PEDF in pericyte loss in early diabetic retinopathy remains to be elucidated. In this study, we investigated whether PEDF proteins could protect against advanced glycation end product (AGE)-induced injury in retinal pericytes. Ligand blot analysis revealed that pericytes possessed a membrane protein with binding affinity for PEDF. PEDF proteins were found to significantly inhibit AGE-induced reactive oxygen species (ROS) generation and the subsequent decrease in DNA synthesis and apoptotic cell death in pericytes. Further, PEDF proteins completely restored the down-regulation of bcl-2 gene expression in AGE-exposed pericytes. The results demonstrated that PEDF proteins protected cultured pericytes from AGE-induced cytotoxicity through its anti-oxidative properties. Our present study suggests that substitution of PEDF proteins may be a promising strategy in treatment of patients with early diabetic retinopathy.
American Journal of Pathology | 2004
Riichiro Abe; Tadamichi Shimizu; Sho-ichi Yamagishi; Akihiko Shibaki; Shinjiro Amano; Yosuke Inagaki; Hirokazu Watanabe; Hiroshi Sugawara; Hideki Nakamura; Masayoshi Takeuchi; Tsutomu Imaizumi; Hiroshi Shimizu
Pigment epithelium-derived factor (PEDF) has recently been shown to be the most potent inhibitor of angiogenesis in the mammalian eye, and is involved in the pathogenesis of angiogenic eye disease such as proliferative diabetic retinopathy. However, a functional role for PEDF in tumor growth and angiogenesis remains to be determined. In this study, we have investigated both the in vitro and in vivo growth characteristics of human malignant melanoma G361 cell lines, stably transfected to overexpress human PEDF. Expression levels of PEDF proteins in melanoma cell lines G361 and A375 were comparable with that of human cultured melanocytes, whereas vascular endothelial growth factor levels in two tumor cell lines were much stronger than that in normal melanocytes. Overexpression of PEDF was found to significantly inhibit tumor growth and vessel formation in G361 nude mice xenografts. Furthermore, in vitro proliferation rates of G361 cells were decreased in PEDF-transfected cells. PEDF proteins showed dose-dependent induced growth retardation and apoptotic cell death in nontransfected G361 cells, which were completely prevented by treatment with antibodies against the Fas ligand. Our present study highlights two beneficial effects of PEDF treatment on melanoma growth and expansion; one is the suppression of tumor angiogenesis, and the other is induction of Fas ligand-dependent apoptosis in tumor cells. PEDF therefore might be a promising novel therapeutic agent for treatment of patients with melanoma.
Diabetologia | 2003
Yosuke Inagaki; Sho-ichi Yamagishi; Tamami Okamoto; Masayoshi Takeuchi; Shinjiro Amano
Aims/hypothesisMonocytes and macrophages accumulate in the lesion of the diabetic retina, which are most likely involved in the progression of diabetic retinopathy. The levels of monocyte chemoattractant protein-1 (MCP-1) in vitreous fluids were associated with the severity of proliferative diabetic retinopathy. Recently, pigment epithelium-derived factor has been shown to be involved in the pathogenesis of proliferative diabetic retinopathy. However, a role of pigment epithelium-derived factor in monocyte recruitments in diabetic retinopathy remains to be elucidated. In this study, we investigated effects of purified pigment epithelium-derived factor on AGE-induced reactive oxygen species generation, MCP-1 mRNA up-regulation and protein production in human cultured microvascular endothelial cells.MethodsThe intracellular formation of reactive oxygen species was measured using the fluorescent probe CM-H2DCFDA. MCP-1 gene expression was analysed in quantitative reverse transcription-polymerase chain reaction. Monocyte chemoattractant protein-1 production by microvascular endothelial cells was measured with an ELISA system.ResultsAGE increased intracellular reactive oxygen species generation in microvascular endothelial cells. Pigment epithelium-derived factor inhibited the AGE-induced reactive oxygen species generation in a dose-dependent manner. An anti-oxidant, N-acetylcysteine, or pigment epithelium-derived factor completely prevented the AGE-induced up-regulation of MCP-1 mRNA contents as well as protein production in microvascular endothelial cells.Conclusions/interpretationsPigment epithelium-derived factor inhibits the AGE-induced reactive oxygen species generation and the subsequent increase in MCP-1 production in microvascular endothelial cells. Our study suggests that substitution of pigment epithelium-derived factor could prevent the progression of diabetic retinopathy by attenuating the deleterious effects of AGE.
Microvascular Research | 2003
Sho-ichi Yamagishi; Shinjiro Amano; Yosuke Inagaki; Tamami Okamoto; Masayoshi Takeuchi; Hiroyoshi Inoue
Leptin, a circulating hormone secreted mainly from adipose tissues, is involved in the control of body weight. Recently, leptin was found to be an angiogenic factor, and its vitreous levels are associated with angiogenic eye diseases such as proliferative diabetic retinopathy. However, the molecular mechanism for leptin-elicited angiogenesis remains to be elucidated. Pigment epithelium-derived factor (PEDF) has been shown to be the most potent natural inhibitor of angiogenesis in the mammalian eye, and its levels in the vitreous were decreased in angiogenic eye diseases. In this study, we investigated whether and how PEDF could inhibit the leptin-induced DNA synthesis in microvascular endothelial cells (EC), a key step of angiogenesis. Leptin significantly increased intracellular reactive oxygen species (ROS) generation in microvascular EC. PEDF was found to inhibit the leptin-induced ROS generation in EC. An anti-oxidant, N-acetylcysteine, or PEDF completely prevented the leptin-induced upregulation of vascular endothelial growth factor (VEGF) mRNA levels as well as any increase in DNA synthesis in microvascular EC. Polyclonal antibodies against human VEGF were also found to completely inhibit DNA synthesis in leptin-exposed EC. The present study suggests that leptin could elicit angiogenesis through autocrine VEGF production via intracellular ROS generation. PEDF may block the angiogenic effects of leptin through its anti-oxidative properties.
Molecular Medicine | 2002
Sho-ichi Yamagishi; Tamami Okamoto; Shinjiro Amano; Yosuke Inagaki; Kohachiro Koga; Mari Koga; Hiroshi Choei; Nobuyuki Sasaki; Seiji Kikuchi; Masayoshi Takeuchi; Zenji Makita
BackgroundRecent observations in the EURODIAB Complications Study demonstrated that markers of insulin resistance are strong risk factors for retinopathy incidence in patients with diabetes. However, the molecular mechanism underlying this remains to be elucidated. In this study, we investigated the influence of palmitate, a major saturated free fatty acid in plasma, on the apoptotic cell death of cultured microvascular endothelial cells (EC) and retinal pericytes.Materials and MethodsThe intracellular formation of reactive oxygen species (ROS) was detected using the fluorescent probe CM-H2DCFDA. DNA synthesis was determined by measuring [3H]-thymidine incorporation into cells. DNA fragmentations of EC were quantitatively analyzed in an enzyme-linked immunosorbent assay, and DNA laddering was evaluated on agarose gel electrophoresis.ResultsPalmitate increased ROS generation in microvascular EC. Furthermore, palmitate significantly inhibited DNA synthesis and induced apoptotic cell death in EC, which were completely prevented by an antioxidant, N-acetylcysteine. Palmitate up-regulated pericyte mRNA levels of a receptor for advanced glycation end products (AGE), and thereby potentiated the apoptotic effects of AGE on pericytes.ConclusionsThe results suggest that palmitate could induce apoptotic cell death in microvascular EC and pericytes through the overgeneration of intracellular ROS, and thus be involved in the development of diabetic retinopathy.
Biochemical and Biophysical Research Communications | 2002
Shinjiro Amano; Sho-ichi Yamagishi; Noriaki Kato; Yosuke Inagaki; Tamami Okamoto; Mitsuhiro Makino; Kaori Taniko; Hiroko Hirooka; Takahito Jomori; Masayoshi Takeuchi
The polyol pathway consists of two enzymes, aldose reductase (AR) and sorbitol dehydrogenase (SDH). There is a growing body of evidence to suggest that acceleration of the polyol pathway is implicated in the pathogenesis of diabetic vascular complications. However, a functional role remains to be elucidated for SDH in the development and progression of diabetic retinopathy. In this study, cultured bovine retinal capillary pericytes were used to investigate the effects of SDH overexpression on glucose toxicity. High glucose modestly increased reactive oxygen species (ROS) generation, decreased DNA synthesis, and up-regulated vascular endothelial growth factor (VEGF) mRNA levels in cultured pericytes. SDH overexpression was found to significantly stimulate ROS generation in high glucose-exposed pericytes and subsequently potentiate the cytopathic effects of glucose. Fidarestat, a newly developed AR inhibitor, and N-acetylcysteine, an antioxidant, completely prevented these deleterious effects of SDH overexpression on pericytes. Furthermore, fidarestat administration was found to significantly prevent vascular hyperpermeability, the characteristic changes of the early phase of diabetic retinopathy, in streptozotocin-induced diabetic rats. Our present results suggest that SDH-mediated conversion of sorbitol to fructose and the resultant ROS generation may play an active role in the pathogenesis of diabetic retinopathy. Blockage of sorbitol formation by fidarestat could be a promising therapeutic strategy for the treatment of early phase of diabetic retinopathy.
Biochemical and Biophysical Research Communications | 2002
Tamami Okamoto; Sho-ichi Yamagishi; Yosuke Inagaki; Shinjiro Amano; Masayoshi Takeuchi; Seiji Kikuchi; Shigeaki Ohno; Akihiko Yoshimura
We have previously shown that advanced glycation end products (AGE), senescent macroprotein derivatives formed at an accelerated rate in diabetes, induced angiogenesis through overgeneration of autocrine vascular endothelial growth factor (VEGF). In the present study, effects of incadronate disodium, a nitrogen-containing bisphosphonate on AGE-elicited angiogenesis in vitro, were studied. Incadronate disodium was found to completely inhibit AGE-induced increase in DNA synthesis as well as tube formation of human microvascular endothelial cells (EC). Furthermore, incadronate disodium significantly prevented transcriptional activation of nuclear factor-kappaB and activator protein-1 and the subsequent up-regulation of VEGF mRNA levels in AGE-exposed EC. Farnesyl pyrophosphate, but not geranylgeranyl pyrophosphate, was found to completely restore the anti-angiogenic effects of incadronate disodium on EC. These results suggest that incadronate disodium could block the AGE-signaling pathway in microvascular EC through inhibition of protein farnesylation. Incadronate disodium may be a promising remedy for treatment of patients with proliferative diabetic retinopathy.
Life Sciences | 2002
Yosuke Inagaki; Sho-ichi Yamagishi; Shinjiro Amano; Tamami Okamoto; Kohachiro Koga; Zenji Makita
Apoptotic macrophages are frequently observed in human atherosclerotic lesions, and are considered to be involved in plaque instability in atherosclerosis. However, the molecular mechanism that promotes programmed cell death of macrophages in atherosclerosis remains to be elucidated. In this study, we investigated the effects of interferon-gamma (IFN-gamma), a cytokine secreted by activated T helper 1 (Th1) lymphocytes, on apoptotic cell death of THP-1 macrophages. Further we studied whether these apoptotic macrophages could be simultaneously activated in vitro and subsequently overgenerate monocyte chemoattractant protein-1 (MCP-1). When THP-1 macrophages were cultured with various concentrations of IFN-gamma, DNA synthesis was significantly decreased. IFN-gamma was found significantly to induce apoptotic cell death in THP-1 macrophages. RNase protection assay revealed that IFN-gamma up-regulated the mRNA levels of two pro-apoptotic molecules, tumor necrosis factor-alpha receptor 1 (TNFR1) and caspase-8, in THP-1 cells. Furthermore, TNF-alpha antibodies were found completely to neutralize the IFN-gamma-induced inhibition in DNA synthesis as well as apoptotic cell death in macrophages. IFN-gamma was found to activate these macrophages to stimulate MCP-1 production. The results suggest that IFN-gamma not only exerted apoptotic effects on macrophages, but also activated them and subsequently overgenerated MCP-1, and was thus involved in the development and progression of atherosclerosis.