Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shiou-Chuan Tsai is active.

Publication


Featured researches published by Shiou-Chuan Tsai.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Crystal structure of the macrocycle-forming thioesterase domain of the erythromycin polyketide synthase: Versatility from a unique substrate channel

Shiou-Chuan Tsai; Larry J. W. Miercke; Jolanta Krucinski; Rajesh S. Gokhale; Julian C.-H. Chen; Paul G. Foster; David E. Cane; Chaitan Khosla; Robert M. Stroud

As the first structural elucidation of a modular polyketide synthase (PKS) domain, the crystal structure of the macrocycle-forming thioesterase (TE) domain from the 6-deoxyerythronolide B synthase (DEBS) was solved by a combination of multiple isomorphous replacement and multiwavelength anomalous dispersion and refined to an R factor of 24.1% to 2.8-Å resolution. Its overall tertiary architecture belongs to the α/β-hydrolase family, with two unusual features unprecedented in this family: a hydrophobic leucine-rich dimer interface and a substrate channel that passes through the entire protein. The active site triad, comprised of Asp-169, His-259, and Ser-142, is located in the middle of the substrate channel, suggesting the passage of the substrate through the protein. Modeling indicates that the active site can accommodate and orient the 6-deoxyerythronolide B precursor uniquely, while at the same time shielding the active site from external water and catalyzing cyclization by macrolactone formation. The geometry and organization of functional groups explain the observed substrate specificity of this TE and offer strategies for engineering macrocycle biosynthesis. Docking of a homology model of the upstream acyl carrier protein (ACP6) against the TE suggests that the 2-fold axis of the TE dimer may also be the axis of symmetry that determines the arrangement of domains in the entire DEBS. Sequence conservation suggests that all TEs from modular polyketide synthases have a similar fold, dimer 2-fold axis, and substrate channel geometry.


Nature | 2009

Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization

Jason M. Crawford; Tyler P. Korman; Jason W. Labonte; Anna L. Vagstad; Eric A. Hill; Oliver Kamari-Bidkorpeh; Shiou-Chuan Tsai; Craig A. Townsend

Polyketides are a class of natural products with diverse structures and biological activities. The structural variability of aromatic products of fungal nonreducing, multidomain iterative polyketide synthases (NR-PKS group of IPKSs) results from regiospecific cyclizations of reactive poly-β-keto intermediates. How poly-β-keto species are synthesized and stabilized, how their chain lengths are determined, and, in particular, how specific cyclization patterns are controlled have been largely inaccessible and functionally unknown until recently. A product template (PT) domain is responsible for controlling specific aldol cyclization and aromatization of these mature polyketide precursors, but the mechanistic basis is unknown. Here we present the 1.8 Å crystal structure and mutational studies of a dissected PT monodomain from PksA, the NR-PKS that initiates the biosynthesis of the potent hepatocarcinogen aflatoxin B1 in Aspergillus parasiticus. Despite having minimal sequence similarity to known enzymes, the structure displays a distinct ‘double hot dog’ (DHD) fold. Co-crystal structures with palmitate or a bicyclic substrate mimic illustrate that PT can bind both linear and bicyclic polyketides. Docking and mutagenesis studies reveal residues important for substrate binding and catalysis, and identify a phosphopantetheine localization channel and a deep two-part interior binding pocket and reaction chamber. Sequence similarity and extensive conservation of active site residues in PT domains suggest that the mechanistic insights gleaned from these studies will prove general for this class of IPKSs, and lay a foundation for defining the molecular rules controlling NR-PKS cyclization specificity.


Structure | 2003

Catalysis, Specificity, and ACP Docking Site of Streptomyces coelicolor Malonyl-CoA:ACP Transacylase

Adrian T. Keatinge-Clay; Anang A. Shelat; David F. Savage; Shiou-Chuan Tsai; Larry J. W. Miercke; Joseph D. O'Connell; Chaitan Khosla; Robert M. Stroud

Malonyl-CoA:ACP transacylase (MAT), the fabD gene product of Streptomyces coelicolor A3(2), participates in both fatty acid and polyketide synthesis pathways, transferring malonyl groups that are used as extender units in chain growth from malonyl-CoA to pathway-specific acyl carrier proteins (ACPs). Here, the 2.0 A structure reveals an invariant arginine bound to an acetate that mimics the malonyl carboxylate and helps define the extender unit binding site. Catalysis may only occur when the oxyanion hole is formed through substrate binding, preventing hydrolysis of the acyl-enzyme intermediate. Macromolecular docking simulations with actinorhodin ACP suggest that the majority of the ACP docking surface is formed by a helical flap. These results should help to engineer polyketide synthases (PKSs) that produce novel polyketides.


Nature | 2014

Trapping the dynamic acyl carrier protein in fatty acid biosynthesis

Chi Nguyen; Robert W. Haushalter; D. John Lee; Phineus R. L. Markwick; Joel Bruegger; Grace Caldara-Festin; Kara Finzel; David R. Jackson; Fumihiro Ishikawa; Bing O’Dowd; J. Andrew McCammon; Stanley J. Opella; Shiou-Chuan Tsai; Michael D. Burkart

Acyl carrier protein (ACP) transports the growing fatty acid chain between enzymatic domains of fatty acid synthase (FAS) during biosynthesis. Because FAS enzymes operate on ACP-bound acyl groups, ACP must stabilize and transport the growing lipid chain. ACPs have a central role in transporting starting materials and intermediates throughout the fatty acid biosynthetic pathway. The transient nature of ACP–enzyme interactions impose major obstacles to obtaining high-resolution structural information about fatty acid biosynthesis, and a new strategy is required to study protein–protein interactions effectively. Here we describe the application of a mechanism-based probe that allows active site-selective covalent crosslinking of AcpP to FabA, the Escherichia coli ACP and fatty acid 3-hydroxyacyl-ACP dehydratase, respectively. We report the 1.9 Å crystal structure of the crosslinked AcpP–FabA complex as a homodimer in which AcpP exhibits two different conformations, representing probable snapshots of ACP in action: the 4′-phosphopantetheine group of AcpP first binds an arginine-rich groove of FabA, then an AcpP helical conformational change locks AcpP and FabA in place. Residues at the interface of AcpP and FabA are identified and validated by solution nuclear magnetic resonance techniques, including chemical shift perturbations and residual dipolar coupling measurements. These not only support our interpretation of the crystal structures but also provide an animated view of ACP in action during fatty acid dehydration. These techniques, in combination with molecular dynamics simulations, show for the first time that FabA extrudes the sequestered acyl chain from the ACP binding pocket before dehydration by repositioning helix III. Extensive sequence conservation among carrier proteins suggests that the mechanistic insights gleaned from our studies may be broadly applicable to fatty acid, polyketide and non-ribosomal biosynthesis. Here the foundation is laid for defining the dynamic action of carrier-protein activity in primary and secondary metabolism, providing insight into pathways that can have major roles in the treatment of cancer, obesity and infectious disease.


Fems Microbiology Reviews | 2011

Fatty acid biosynthesis in actinomycetes

Gabriela Gago; Lautaro Diacovich; Ana Arabolaza; Shiou-Chuan Tsai; Hugo Gramajo

All organisms that produce fatty acids do so via a repeated cycle of reactions. In mammals and other animals, these reactions are catalyzed by a type I fatty acid synthase (FAS), a large multifunctional protein to which the growing chain is covalently attached. In contrast, most bacteria (and plants) contain a type II system in which each reaction is catalyzed by a discrete protein. The pathway of fatty acid biosynthesis in Escherichia coli is well established and has provided a foundation for elucidating the type II FAS pathways in other bacteria (White et al., 2005). However, fatty acid biosynthesis is more diverse in the phylum Actinobacteria: Mycobacterium, possess both FAS systems while Streptomyces species have only the multienzyme FAS II system and Corynebacterium species exclusively FAS I. In this review, we present an overview of the genome organization, biochemical properties and physiological relevance of the two FAS systems in the three genera of actinomycetes mentioned above. We also address in detail the biochemical and structural properties of the acyl-CoA carboxylases (ACCases) that catalyzes the first committed step of fatty acid synthesis in actinomycetes, and discuss the molecular bases of their substrate specificity and the structure-based identification of new ACCase inhibitors with antimycobacterial properties.


Applied and Environmental Microbiology | 2006

Engineered Biosynthesis of a Novel Amidated Polyketide, Using the Malonamyl-Specific Initiation Module from the Oxytetracycline Polyketide Synthase

Wenjun Zhang; Brian D. Ames; Shiou-Chuan Tsai; Yi Tang

ABSTRACT Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases (PKSs). Understanding the biochemistry of tetracycline PKSs is an important step toward the rational and combinatorial manipulation of tetracycline biosynthesis. To this end, we have sequenced the gene cluster of oxytetracycline (oxy and otc genes) PKS genes from Streptomyces rimosus. Sequence analysis revealed a total of 21 genes between the otrA and otrB resistance genes. We hypothesized that an amidotransferase, OxyD, synthesizes the malonamate starter unit that is a universal building block for tetracycline compounds. In vivo reconstitution using strain CH999 revealed that the minimal PKS and OxyD are necessary and sufficient for the biosynthesis of amidated polyketides. A novel alkaloid (WJ35, or compound 2) was synthesized as the major product when the oxy-encoded minimal PKS, the C-9 ketoreductase (OxyJ), and OxyD were coexpressed in CH999. WJ35 is an isoquinolone compound derived from an amidated decaketide backbone and cyclized with novel regioselectivity. The expression of OxyD with a heterologous minimal PKS did not afford similarly amidated polyketides, suggesting that the oxy-encoded minimal PKS possesses novel starter unit specificity.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Crystal structure and functional analysis of tetracenomycin ARO/CYC: implications for cyclization specificity of aromatic polyketides.

Brian D. Ames; Tyler P. Korman; Wenjun Zhang; Pete Smith; Thanh Vu; Yi Tang; Shiou-Chuan Tsai

Polyketides are a class of natural products with highly diverse chemical structures and pharmaceutical activities. Polyketide cyclization, promoted by the aromatase/cyclase (ARO/CYC), helps diversify aromatic polyketides. How the ARO/CYC promotes highly specific cyclization is not well understood because of the lack of a first-ring ARO/CYC structure. The 1.9 Å crystal structure of Tcm ARO/CYC reveals that the enzyme belongs to the Bet v1-like superfamily (or STAR domain family) with a helix–grip fold, and contains a highly conserved interior pocket. Docking, mutagenesis, and an in vivo assay show that the size, shape, and composition of the pocket are important to orient and specifically fold the polyketide chain for C9-C14 first-ring and C7-C16 second-ring cyclizations. Two pocket residues, R69 and Y35, were found to be essential for promoting first- and second-ring cyclization specificity. Different pocket residue mutations affected the polyketide product distribution. A mechanism is proposed based on the structure-mutation-docking results. These results strongly suggest that the regiospecific cyclizations of the first two rings and subsequent aromatizations take place in the interior pocket. The chemical insights gleaned from this work pave the foundation toward defining the molecular rules for the ARO/CYC cyclization specificity, whose rational control will be important for future endeavors in the engineered biosynthesis of novel anticancer and antibiotic aromatic polyketides.


Structure | 2002

Crystal Structure of the Priming β-Ketosynthase from the R1128 Polyketide Biosynthetic Pathway

Hu Pan; Shiou-Chuan Tsai; Eric S. Meadows; Larry J. W. Miercke; Adrian T. Keatinge-Clay; Joe O'Connell; Chaitan Khosla; Robert M. Stroud

ZhuH is a priming ketosynthase that initiates the elongation of the polyketide chain in the biosynthetic pathway of a type II polyketide, R1128. The crystal structure of ZhuH in complex with the priming substrate acetyl-CoA reveals an extensive loop region at the dimer interface that appears to affect the selectivity for the primer unit. Acetyl-CoA is bound in a 20 A-long channel, which placed the acetyl group against the catalytic triad. Analysis of the primer unit binding site in ZhuH suggests that it can accommodate acyl chains that are two to four carbons long. Selectivity and primer unit size appear to involve the side chains of three residues on the loops close to the dimer interface that constitute the bottom of the substrate binding pocket.


Journal of Bacteriology | 2006

Biochemical and Structural Characterization of an Essential Acyl Coenzyme A Carboxylase from Mycobacterium tuberculosis

Gabriela Gago; Daniel Kurth; Lautaro Diacovich; Shiou-Chuan Tsai; Hugo Gramajo

Pathogenic mycobacteria contain a variety of unique fatty acids that have methyl branches at an even-numbered position at the carboxyl end and a long n-aliphatic chain. One such group of acids, called mycocerosic acids, is found uniquely in the cell wall of pathogenic mycobacteria, and their biosynthesis is essential for growth and pathogenesis. Therefore, the biosynthetic pathway of the unique precursor of such lipids, methylmalonyl coenzyme A (CoA), represents an attractive target for developing new antituberculous drugs. Heterologous protein expression and purification of the individual subunits allowed the successful reconstitution of an essential acyl-CoA carboxylase from Mycobacterium tuberculosis, whose main role appears to be the synthesis of methylmalonyl-CoA. The enzyme complex was reconstituted from the alpha biotinylated subunit AccA3, the carboxyltransferase beta subunit AccD5, and the epsilon subunit AccE5 (Rv3281). The kinetic properties of this enzyme showed a clear substrate preference for propionyl-CoA compared with acetyl-CoA (specificity constant fivefold higher), indicating that the main physiological role of this enzyme complex is to generate methylmalonyl-CoA for the biosynthesis of branched-chain fatty acids. The alpha and beta subunits are capable of forming a stable alpha6-beta6 subcomplex but with very low specific activity. The addition of the epsilon subunit, which binds tightly to the alpha-beta subcomplex, is essential for gaining maximal enzyme activity.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesis

Tyler P. Korman; Jason M. Crawford; Jason W. Labonte; Adam G. Newman; Justin Wong; Craig A. Townsend; Shiou-Chuan Tsai

Polyketide natural products possess diverse architectures and biological functions and share a subset of biosynthetic steps with fatty acid synthesis. The final transformation catalyzed by both polyketide synthases (PKSs) and fatty acid synthases is most often carried out by a thioesterase (TE). The synthetic versatility of TE domains in fungal nonreducing, iterative PKSs (NR-PKSs) has been shown to extend to Claisen cyclase (CLC) chemistry by catalyzing C–C ring closure reactions as opposed to thioester hydrolysis or O–C/N–C macrocyclization observed in previously reported TE structures. Catalysis of C–C bond formation as a product release mechanism dramatically expands the synthetic potential of PKSs, but how this activity was acquired has remained a mystery. We report the biochemical and structural analyses of the TE/CLC domain in polyketide synthase A, the multidomain PKS central to the biosynthesis of aflatoxin B1, a potent environmental carcinogen. Mutagenesis experiments confirm the predicted identity of the catalytic triad and its role in catalyzing the final Claisen-type cyclization to the aflatoxin precursor, norsolorinic acid anthrone. The 1.7 Å crystal structure displays an α/β-hydrolase fold in the catalytic closed form with a distinct hydrophobic substrate-binding chamber. We propose that a key rotation of the substrate side chain coupled to a protein conformational change from the open to closed form spatially governs substrate positioning and C–C cyclization. The biochemical studies, the 1.7 Å crystal structure of the TE/CLC domain, and intermediate modeling afford the first mechanistic insights into this widely distributed C–C bond-forming class of TEs.

Collaboration


Dive into the Shiou-Chuan Tsai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel Bruegger

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hugo Gramajo

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge