Shiwu Gao
Fujian Agriculture and Forestry University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shiwu Gao.
Scientific Reports | 2015
Dinggang Zhou; Jinlong Guo; Liping Xu; Shiwu Gao; Qingliang Lin; Qibin Wu; Luguang Wu; Youxiong Que
To meet the demand for detection of foreign genes in genetically modified (GM) sugarcane necessary for regulation of gene technology, an efficient method with high specificity and rapidity was developed for the cry1Ac gene, based on loop-mediated isothermal amplification (LAMP). A set of four primers was designed using the sequence of cry1Ac along with optimized reaction conditions: 5.25 mM of Mg2+, 4:1 ratio of inner primer to outer primer, 2.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. Three post-LAMP detection methods (precipitation, calcein (0.60 mM) with Mn2+ (0.05 mM) complex and SYBR Green I visualization), were shown to be effective. The sensitivity of the LAMP method was tenfold higher than that of conventional PCR when using templates of the recombinant cry1Ac plasmid or genomic DNA from cry1Ac transgenic sugarcane plants. More importantly, this system allowed detection of the foreign gene on-site when screening GM sugarcane without complex and expensive instruments, using the naked eye. This method can not only provide technological support for detection of cry1Ac, but can also further facilitate the use of this detection technique for other transgenes in GM sugarcane.
BioMed Research International | 2013
Jinlong Guo; Liping Xu; Yachun Su; Hengbo Wang; Shiwu Gao; Jingsheng Xu; Youxiong Que
Plant metallothioneins (MTs), which are cysteine-rich, low-molecular-weight, and metal-binding proteins, play important roles in detoxification, metal ion homeostasis, and metal transport adjustment. In this study, a novel metallothionein gene, designated as ScMT2-1-3 (GenBank Accession number JQ627644), was identified from sugarcane. ScMT2-1-3 was 700 bp long, including a 240 bp open reading frame (ORF) encoding 79 amino acid residues. A His-tagged ScMT2-1-3 protein was successfully expressed in Escherichia coli system which had increased the host cells tolerance to Cd2+, Cu2+, PEG, and NaCl. The expression of ScMT2-1-3 was upregulated under Cu2+ stress but downregulated under Cd2+ stress. Real-time qPCR demonstrated that the expression levels of ScMT2-1-3 in bud and root were over 14 times higher than those in stem and leaf, respectively. Thus, both the E. coli assay and sugarcane plantlets assay suggested that ScMT2-1-3 is significantly involved in the copper detoxification and storage in the cell, but its functional mechanism in cadmium detoxification and storage in sugarcane cells needs more testification though its expressed protein could obviously increase the host E. coli cells tolerance to Cd2+. ScMT2-1-3 constitutes thus a new interesting candidate for elucidating the molecular mechanisms of MTs-implied plant heavy metal tolerance/accumulation and for developing sugarcane phytoremediator varieties.
BioMed Research International | 2015
Jinlong Guo; Shiwu Gao; Qinliang Lin; Hengbo Wang; Youxiong Que; Liping Xu
As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV) and/or Sorghum mosaic virus (SrMV), with additional differences in viral strains. RNA interference (RNAi) is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP) genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.
Frontiers in Plant Science | 2018
Feng Liu; Ning Huang; Ling Wang; Hui Ling; Tingting Sun; Waqar Ahmad; Khushi Muhammad; Jinxin Guo; Liping Xu; Shiwu Gao; Youxiong Que; Yachun Su
The L-ascorbate peroxidase 6 gene (APX6) is one of the most important genes for scavenging H2O2 and plays a vital role in plant resistance to environmental stresses. In this study, a novel ScAPX6 gene (GenBank Accession No. KT907352) was obtained from a sugarcane variety (ROC22). Bioinformatics analysis showed that ScAPX6 has a cDNA length of 1,086 bp and encoded 333 amino acid residues. Subcellular localization confirmed that ScAPX6 was located in the chloroplast. Enhanced growth of Escherichia coli BL21 cells that expressed ScAPX6 showed high tolerance under copper (Cu) stress. Real-time quantitative PCR analysis revealed that ScAPX6 was constitutively expressed wherein with the highest expression levels in sugarcane pith and leaf and the lowest in the root. ScAPX6 was down-regulated by salicylic acid (SA), hydrogen peroxide (H2O2), polyethylene glycol (PEG) and sodium chloride (NaCl) stimuli. Interestingly, it was significantly up-regulated under the stresses of abscisic acid (ABA) and methyl jasmonate (MeJA) wherein with the highest inducible expression levels at 6 h at 6.0- and 70.0-times higher, respectively than that of control. Overexpression of ScAPX6 in Nicotiana benthamiana leaves enhanced the resistance to the infection of tobacco pathogens Pseudomonas solanacearum and Fusarium solani var. coeruleum. These results implied that ScAPX6 might positively respond to ABA, MeJA, and Cu, but might negatively respond to the stresses of SA, H2O2, PEG, and NaCl. Keeping in view the current investigation, ScAPX6 could be associated with the hypersensitive response (HR) or immunity of sugarcane, which will provide a baseline for the function identification of sugarcane ScAPX6.
BMC Genomics | 2017
Feng Liu; Tingting Sun; Ling Wang; Weihua Su; Shiwu Gao; Yachun Su; Liping Xu; Youxiong Que
BackgroundSugarcane smut caused by Sporisorium scitamineum is one of the most severe fungal diseases in the sugarcane industry. Using a molecular biological technique to mine sugarcane resistance genes can provide gene resources for further genetic engineering of sugarcane disease-resistant breeding. Jasmonate ZIM (zinc-finger inflorescence meristem) domain (JAZ) proteins, which involved in the responses to plant pathogens and abiotic stresses, are important signaling molecules of the jasmonic acid (JA) pathway.ResultsSeven differentially expressed sugarcane JAZ genes, ScJAZ1–ScJAZ7, were mined from the transcriptome of sugarcane after inoculation with S. scitamineum. Bioinformatic analyses revealed that these seven ScJAZ genes encoded basic proteins that contain the TIFY and CCT_2 domains. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis demonstrated that the ScJAZ1–ScJAZ7 genes were tissue specific and differentially expressed under adverse stress. During S. scitamineum infection, the transcripts of ScJAZ4 and ScJAZ5 were both upregulated in the susceptible genotype ROC22 and the resistant genotype Yacheng05–179; ScJAZ1, ScJAZ2, ScJAZ3, and ScJAZ7 were downregulated in Yacheng05–179 and upregulated in ROC22; and the expression of ScJAZ6 did not change in ROC22, but was upregulated in Yacheng05–179. The transcripts of the seven ScJAZ genes were increased by the stimuli of salicylic acid and abscisic acid, particularly methyl jasmonate. The expression of the genes ScJAZ1–ScJAZ7 was immediately upregulated by the stressors hydrogen peroxide, sodium chloride, and copper chloride, whereas slightly induced after treatment with calcium chloride and polyethylene glycol. In addition, the expression of ScJAZ6, as well as seven tobacco immunity-associated marker genes were upregulated, and antimicrobial activity against Pseudomonas solanacearum and Fusarium solani var. coeruleum was observed during the transient overexpression of ScJAZ6 in Nicotiana benthamiana, suggesting that the ScJAZ6 gene is associated with plant immunity.ConclusionsThe different expression profiles of the ScJAZ1–ScJAZ7 genes during S. scitamineum infection, the positive response of ScJAZ1–ScJAZ7 to hormones and abiotic treatments, and the function analysis of the ScJAZ6 gene revealed their involvement in the defense against biotic and abiotic stresses. The findings of the present study facilitate further research on the ScJAZ gene family especially their regulatory mechanism in sugarcane.
Sugar Tech | 2008
Jingsheng Xu; Shiwu Gao; Liping Xu; Rukai Chen
A plant expression vector, pGCryIA(c), was constructed by linking CryIA(c) gene which has UBI as promoter and NOS as terminator into pGreenII 0229. The size of pGCryIA(c) is 8,602 bp with bar (phosphinothricin acetyl transferase) gene as screening marker gene by using herbicide phosphinothricin (PPT) or Basta selection. The embryonic callus of GT94-119 was transformed with the plasmid of pUBCG0229 by bombardment. 203 regenerated plants were obtained after screening with PPT or Basta. Two transformation events were proved sucessful by PCR, PCR products sequencing and Dot-Southern blotting.
Tropical Plant Biology | 2018
Hui Ling; Ning Huang; Qibing Wu; Yachun Su; Qiong Peng; Waqar Ahmed; Shiwu Gao; Weihua Su; Youxiong Que; Liping Xu
Mosaic disease is a major viral disease that severely compromises sugar content and cane production. Among mosaic disease pathogens, Sorghum mosaic virus (SrMV) is the most prevalent one. To better understand the interaction mechanism between sugarcane and SrMV, samples of SrMV-infected and virus-free leaves of sugarcane cultivar ROC22 were deep sequenced and the sequencing data was confirmed by qRT-PCR. In total, 89,338 unigenes, 481 differentially expressed unigenes and 51 homologous sequences of Potyvirus host interactor (PHI) genes were obtained. The RNA-seq data implied that, the increase of SrMV replication from endoplasmic reticulum (ER) to chloroplast led to chloroplasts damage, following the initiation of differential expression of genes related to Ca2 +, ROS, cytokinin, auxin, and ethylene signaling, and also the transcription of some defense related genes. Among 51 PHIs, the upregulation of a calmodulin-related protein gene and an ethylene-inducible transcription factor gene in two SrMV-resistant and two SrMV-susceptible sugarcane cultivars under SrMV infection suggests that these two genes could be used as potential gene knockout targets for creating SrMV incompatible germplasm. Besides, based on its inverse expression pattern in the SrMV-resistant and -susceptible sugarcane cultivars, genes encoding heat shock protein 70, chloroplastic rieske Fe/S protein, reticulon homology domain protein and salicylic acid binding protein 3 might be used as the potential markers for identifying the resistance or susceptibility of sugarcane materials to SrMV. This study should help to understand the molecular mechanisms underlying SrMV-resistance of sugarcane cultivars.
International Journal of Molecular Sciences | 2018
Shiwu Gao; Yingying Yang; Liping Xu; Jinlong Guo; Yachun Su; Qibin Wu; Chunfeng Wang; Youxiong Que
Sugarcane borer is the most common and harmful pest in Chinese sugarcane fields, and can cause damage to the whole plant during the entire growing season. To improve borer resistance in sugarcane, we constructed a plant expression vector pGcry2A0229 with the bar gene as the marker and the cry2A gene as the target, and introduced it into embryogenic calli of most widely cultivated sugarcane cultivar ROC22 by particle bombardment. After screening with phosphinothricin in vitro and Basta spray, 21 resistance-regenerated plants were obtained, and 10 positive transgenic lines harboring the cry2A gene were further confirmed by conventional PCR detection. Real-time quantitative PCR (RT-qPCR) analysis showed that the copy number of the cry2A gene varied among different transgenic lines but did not exceed four copies. Quantitative ELISA analysis showed that there was no linear relationship with copy number but negatively correlated with the percentage of borer-infested plants. The analysis of industrial and agronomic traits showed that the theoretical sugar yields of transgenic lines TR-4 and TR-10 were slightly lower than that of the control in both plant cane and ratoon cane; nevertheless, TR-4 and TR-10 lines exhibited markedly lower in frequency of borer-infested plants in plant cane and in the ratoon cane compared to the control. Our results indicate that the introduction of the cry2A gene via bombardment produces transgenic lines with obviously increased stem borer resistance and comparable sugar yield, providing a practical value in direct commercial cultivation and crossbreeding for ROC22 has been used as the most popular elite genitor in various breeding programs in China.
Gene | 2018
Ning Huang; Hui Ling; Yachun Su; Feng Liu; Liping Xu; Weihua Su; Qibin Wu; Jinlong Guo; Shiwu Gao; Youxiong Que
BACKGROUND Sugarcane smut, which is caused by Sporisorium scitamineum, is a severe fungal disease affecting sugarcane. However, the major pathways involved in the interaction between sugarcane and S. scitamineum remains unclear. RESULTS In the present study, suppression subtractive hybridization (SSH) library construction, together with reverse northern blotting, was conducted on the most prevalent sugarcane genotype ROC22 challenged with S. scitamineum. After alignment and homologous expressed sequence tag (EST) assembly, a total of 155 differentially expressed unigenes were identified from SSH libraries. Totally, 26 of 155 differentially expressed unigenes were analyzed by qRT-PCR in sugarcane smut-resistant genotype YC05-179 and susceptible genotype ROC22. Genes encoded two unknown protein (Q1 and Q11), serine/threonine kinase (Q2), fiber protein (Q3), eukaryotic translation initiation factor 5A (Q23), and Sc14-3-3-like protein (Q24) were induced in sugarcane smut-resistant genotype YC05-179 but inhibited in susceptible genotype ROC22. Based on the differential expression data achieved from SSH libraries and qRT-PCR, we found that, serine/threonine kinases, Ca2+ sensors, mitogen-activated protein genes and some NBS-LRR genes may involve in the signal recognition and transduction of smut fungus infection in sugarcane. While in the plant hormone signaling pathways, the genes related to auxin, abscisic acid, salicylic acid and ethylene were more apparently in response to smut fungus invasion. The hypersensitive response, protein metabolism, polyamine synthesis, and cell wall formation may play an important role in sugarcane defense against smut fungus colonization. Additionally, the Sc14-3-3 might serve as a molecular modulator in sugarcane being immune to smut disease by interacting with proteins like ScGAPN (Q10), which have been further verified by BiFC assay. CONCLUSIONS The findings of the present study could provide a general view about gene pathways involving in sugarcane defense against smut disease and facilitate a better understanding of the molecular mechanism underlying sugarcane-S. scitamineum interaction.
BioMed Research International | 2018
Qibin Wu; Yong-Bao Pan; Dinggang Zhou; M. P. Grisham; Shiwu Gao; Yachun Su; Jinlong Guo; Liping Xu; Youxiong Que
The ratoon stunting disease (RSD), caused by the bacterium Leifsonia xyli subsp. xyli (Lxx), is one of the most economically devastating diseases impacting sugarcane. RSD causes significant yield losses and variety degradation. Diagnosis of RSD is challenging because it does not exhibit any discernible internal and external symptoms. Moreover, the Lxx bacteria are very small and difficult to isolate, cultivate, and detect. In this study, conventional polymerase chain reaction (PCR), real-time quantitative PCR (RT-qPCR), and Lxx-loop-mediated isothermal amplification (Lxx-LAMP) were utilized to specifically detect the presence of Lxx pathogens in the juice from Lxx-infected sugarcane stalks and an Lxx-pMD18-T recombinant plasmid. The results showed that Lxx was a highly specific causal pathogen for RSD. All three techniques provided great reproducibility, while Lxx-LAMP had the highest sensitivity. When the DNA extract from Lxx-infected sugarcane juice was used as a template, Lxx-LAMP was 10 and 100 times more sensitive than RT-qPCR and conventional PCR, respectively. When the Lxx-pMD18-T recombinant plasmid was used as a template, Lxx-LAMP was as sensitive as RT-qPCR but was 10 times more sensitive than conventional PCR. Based on the Lxx-LAMP detection system established, adding 0.4 μM loop primers (LF/LP) can accelerate the reaction and reduce the total time required. In addition, the optimal amount of Bst DNA polymerase for Lxx-LAMP reactions was determined to be 6.0 U. The results provide technical support for the detection of RSD Lxx pathogen that will help manage sugarcane RSD.