Youxiong Que
Fujian Agriculture and Forestry University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Youxiong Que.
Sugar Tech | 2006
Pingwu Liu; Youxiong Que; Yong-Bao Pan
The objective of this study was to evaluate the entire set of 221 sugarcane microsatellite (SSR) markers from the International Sugarcane Microsatellite Consortium for their utility on molecular characterization of elite U.S. germplasm. Five elite U.S. sugarcane clones were tested, including two cultivars LCP 85-384 and HoCP 96-540 from Louisiana, two cultivars CP 72-1210 and CP 85-1308 from Florida, and Green German, an active parental clone used in both states. The 5’ ends of all forward primers were labeled with the fluorescent phosphoramidite dye, FAM and PCR-amplified DNA fragments detected using a semi-automatic capillary electrophoresis system. The sizes of DNA fragments were computed accurately by running genotyping software calibrated against 16 fluorescence-labeled DNA size standard fragments. Evaluation criteria included PCR robustness, extent of the presence of irregular peaks, and the polymorphism information content (PIC). Sixty-seven SSR markers (30% of the total) were found to be highly robust, with PIC values ranging from 56% to 80%. Of these, 40 (60%) markers contained dinucleotide repeats, 11 (16%) markers contained trinucleotide repeats, and 16 (24%) markers contained composite repeats. A total of 467 alleles were scored, of which 350 were polymorphic, averaging five polymorphic alleles per marker, with their sizes ranging from 80 to 460 bp. Several of these highly polymorphic SSR markers have proven useful in sugarcane germplasm evaluation, variety identity tests, cross fidelity assessment, and polycross paternity analysis.
Scientific Reports | 2015
Jinlong Guo; Hui Ling; Qibin Wu; Liping Xu; Youxiong Que
Sugarcane (Saccharum spp. hybrids) is a world-wide cash crop for sugar and biofuel in tropical and subtropical regions and suffers serious losses in cane yield and sugar content under salinity and drought stresses. Although real-time quantitative PCR has a numerous advantage in the expression quantification of stress-related genes for the elaboration of the corresponding molecular mechanism in sugarcane, the variation happened across the process of gene expression quantification should be normalized and monitored by introducing one or several reference genes. To validate suitable reference genes or gene sets for sugarcane gene expression normalization, 13 candidate reference genes have been tested across 12 NaCl- and PEG-treated sugarcane samples for four sugarcane genotypes using four commonly used systematic statistical algorithms termed geNorm, BestKeeper, NormFinder and the deltaCt method. The results demonstrated that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and eukaryotic elongation factor 1-alpha (eEF-1a) were identified as suitable reference genes for gene expression normalization under salinity/drought-treatment in sugarcane. Moreover, the expression analyses of SuSK and 6PGDH further validated that a combination of clathrin adaptor complex (CAC) and cullin (CUL) as reference should be better for gene expression normalization. These results can facilitate the future research on gene expression in sugarcane under salinity and drought stresses.
PLOS ONE | 2014
Hui Ling; Qibin Wu; Jinlong Guo; Liping Xu; Youxiong Que
The increasingly used real time quantitative reverse transcription-PCR (qRT-PCR) method for gene expression analysis requires one or several reference gene(s) acting as normalization factor(s). In order to facilitate gene expression studies in sugarcane (Saccharum officinarum), a non-model plant with limited genome information, the stability of 13 candidate reference genes was evaluated. The geNorm, NormFinder and deltaCt methods were used for selecting stably expressed internal controls across different tissues and under various experimental treatments. These results revealed that, among these 13 candidate reference genes, GAPDH, eEF-1a and eIF-4α were the most stable and suitable for use as normalization factors across all various experimental samples. In addition, APRT could be a candidate for examining the relationship between gene copy number and transcript levels in sugarcane tissue samples. According to the results evaluated by geNorm, combining CUL and eEF-1α in hormone treatment experiments; CAC and CUL in abiotic stress tests; GAPDH, eEF-1a and CUL in all treatment samples plus CAC, CUL, APRT and TIPS-41 in cultivar tissues as groups for normalization would lead to more accurate and reliable expression quantification in sugarcane. This is the first systematic validation of reference genes for quantification of transcript expression profiles in sugarcane. This study should provide useful information for selecting reference genes for more accurate quantification of gene expression in sugarcane and other plant species.
BMC Genomics | 2014
Youxiong Que; Liping Xu; Qibin Wu; Yongfeng Liu; Hui Ling; Yanhong Liu; Yuye Zhang; Jinlong Guo; Yachun Su; Jiebo Chen; Shanshan Wang; Chengguang Zhang
BackgroundSugarcane smut can cause losses in cane yield and sugar content that range from 30% to total crop failure. Losses tend to increase with the passage of years. Sporisorium scitamineum is the fungus that causes sugarcane smut. This fungus has the potential to infect all sugarcane species unless a species is resistant to biotrophic fungal pathogens. However, it remains unclear how the fungus breaks through the cell walls of sugarcane and causes the formation of black or gray whip-like structures on the sugarcane plants.ResultsHere, we report the first high-quality genome sequence of S. scitamineum assembled de novo with a contig N50 of 41 kb, a scaffold N50 of 884 kb and genome size 19.8 Mb, containing an estimated 6,636 genes. This phytopathogen can utilize a wide range of carbon and nitrogen sources. A reduced set of genes encoding plant cell wall hydrolytic enzymes leads to its biotrophic lifestyle, in which damage to the host should be minimized. As a bipolar mating fungus, a and b loci are linked and the mating-type locus segregates as a single locus. The S. scitamineum genome has only 6 G protein-coupled receptors (GPCRs) grouped into five classes, which are responsible for transducing extracellular signals into intracellular responses, however, the genome is without any PTH11-like GPCR. There are 192 virulence associated genes in the genome of S. scitamineum, among which 31 expressed in all the stages, which mainly encode for energy metabolism and redox of short-chain compound related enzymes. Sixty-eight candidates for secreted effector proteins (CSEPs) were found in the genome of S. scitamineum, and 32 of them expressed in the different stages of sugarcane infection, which are probably involved in infection and/or triggering defense responses. There are two non-ribosomal peptide synthetase (NRPS) gene clusters that are involved in the generation of ferrichrome and ferrichrome A, while the terpenes gene cluster is composed of three unknown function genes and seven biosynthesis related genes.ConclusionsAs a destructive pathogen to sugar industry, the S. scitamineum genome will facilitate future research on the genomic basis and the pathogenic mechanisms of sugarcane smut.
Scientific Reports | 2015
Dinggang Zhou; Jinlong Guo; Liping Xu; Shiwu Gao; Qingliang Lin; Qibin Wu; Luguang Wu; Youxiong Que
To meet the demand for detection of foreign genes in genetically modified (GM) sugarcane necessary for regulation of gene technology, an efficient method with high specificity and rapidity was developed for the cry1Ac gene, based on loop-mediated isothermal amplification (LAMP). A set of four primers was designed using the sequence of cry1Ac along with optimized reaction conditions: 5.25 mM of Mg2+, 4:1 ratio of inner primer to outer primer, 2.0 U of Bst DNA polymerase in a reaction volume of 25.0 μL. Three post-LAMP detection methods (precipitation, calcein (0.60 mM) with Mn2+ (0.05 mM) complex and SYBR Green I visualization), were shown to be effective. The sensitivity of the LAMP method was tenfold higher than that of conventional PCR when using templates of the recombinant cry1Ac plasmid or genomic DNA from cry1Ac transgenic sugarcane plants. More importantly, this system allowed detection of the foreign gene on-site when screening GM sugarcane without complex and expensive instruments, using the naked eye. This method can not only provide technological support for detection of cry1Ac, but can also further facilitate the use of this detection technique for other transgenes in GM sugarcane.
PLOS ONE | 2014
Yachun Su; Jinlong Guo; Hui Ling; Shanshan Chen; Shanshan Wang; Liping Xu; Andrew C. Allan; Youxiong Que
Catalase is an iron porphyrin enzyme, which serves as an efficient scavenger of reactive oxygen species (ROS) to avoid oxidative damage. In sugarcane, the enzymatic activity of catalase in a variety (Yacheng05–179) resistant to the smut pathogen Sporisorium scitamineum was always higher than that of the susceptible variety (Liucheng03–182), suggesting that catalase activity may have a positive correlation with smut resistance in sugarcane. To understand the function of catalase at the molecular level, a cDNA sequence of ScCAT1 (GenBank Accession No. KF664183), was isolated from sugarcane infected by S. scitamineum. ScCAT1 was predicted to encode 492 amino acid residues, and its deduced amino acid sequence shared a high degree of homology with other plant catalases. Enhanced growth of ScCAT1 in recombinant Escherichia coli Rosetta cells under the stresses of CuCl2, CdCl2 and NaCl indicated its high tolerance. Q-PCR results showed that ScCAT1 was expressed at relatively high levels in the bud, whereas expression was moderate in stem epidermis and stem pith. Different kinds of stresses, including S. scitamineum challenge, plant hormones (SA, MeJA and ABA) treatments, oxidative (H2O2) stress, heavy metal (CuCl2) and hyper-osmotic (PEG and NaCl) stresses, triggered a significant induction of ScCAT1. The ScCAT1 protein appeared to localize in plasma membrane and cytoplasm. Furthermore, histochemical assays using DAB and trypan blue staining, as well as conductivity measurement, indicated that ScCAT1 may confer the sugarcane immunity. In conclusion, the positive response of ScCAT1 to biotic and abiotic stresses suggests that ScCAT1 is involved in protection of sugarcane against reactive oxidant-related environmental stimuli.
PLOS ONE | 2014
Youxiong Que; Yachun Su; Jinlong Guo; Qibin Wu; Liping Xu
Sugarcane smut caused by Sporisorium scitamineum is a critical fungal disease in the sugarcane industry. However, molecular mechanistic studies of pathological response of sugarcane to S. scitamineum are scarce and preliminary. Here, transcriptome analysis of sugarcane disease induced by S. scitamineum at 24, 48 and 120 h was conducted, using an S. scitamineum-resistant and -susceptible genotype (Yacheng05-179 and “ROC”22). The reliability of Illumina data was confirmed by real-time quantitative PCR. In total, transcriptome sequencing of eight samples revealed gene annotations of 65,852 unigenes. Correlation analysis of differentially expressed genes indicated that after S. scitamineum infection, most differentially expressed genes and related metabolic pathways in both sugarcane genotypes were common, covering most biological activities. However, expression of resistance-associated genes in Yacheng05-179 (24–48 h) occurred earlier than those in “ROC”22 (48–120 h), and more transcript expressions were observed in the former, suggesting resistance specificity and early timing of these genes in non-affinity sugarcane and S. scitamineum interactions. Obtained unigenes were related to cellular components, molecular functions and biological processes. From these data, functional annotations associated with resistance were obtained, including signal transduction mechanisms, energy production and conversion, inorganic ion transport and metabolism, and defense mechanisms. Pathway enrichment analysis revealed that differentially expressed genes are involved in plant hormone signal transduction, flavonoid biosynthesis, plant-pathogen interaction, cell wall fortification pathway and other resistance-associated metabolic pathways. Disease inoculation experiments and the validation of in vitro antibacterial activity of the chitinase gene ScChi show that this sugarcane chitinase gene identified through RNA-Seq analysis is relevant to plant-pathogen interactions. In conclusion, expression data here represent the most comprehensive dataset available for sugarcane smut induced by S. scitamineum and will serve as a resource for finally unraveling the molecular mechanisms of sugarcane responses to S. scitamineum.
BioMed Research International | 2013
Jinlong Guo; Liping Xu; Yachun Su; Hengbo Wang; Shiwu Gao; Jingsheng Xu; Youxiong Que
Plant metallothioneins (MTs), which are cysteine-rich, low-molecular-weight, and metal-binding proteins, play important roles in detoxification, metal ion homeostasis, and metal transport adjustment. In this study, a novel metallothionein gene, designated as ScMT2-1-3 (GenBank Accession number JQ627644), was identified from sugarcane. ScMT2-1-3 was 700 bp long, including a 240 bp open reading frame (ORF) encoding 79 amino acid residues. A His-tagged ScMT2-1-3 protein was successfully expressed in Escherichia coli system which had increased the host cells tolerance to Cd2+, Cu2+, PEG, and NaCl. The expression of ScMT2-1-3 was upregulated under Cu2+ stress but downregulated under Cd2+ stress. Real-time qPCR demonstrated that the expression levels of ScMT2-1-3 in bud and root were over 14 times higher than those in stem and leaf, respectively. Thus, both the E. coli assay and sugarcane plantlets assay suggested that ScMT2-1-3 is significantly involved in the copper detoxification and storage in the cell, but its functional mechanism in cadmium detoxification and storage in sugarcane cells needs more testification though its expressed protein could obviously increase the host E. coli cells tolerance to Cd2+. ScMT2-1-3 constitutes thus a new interesting candidate for elucidating the molecular mechanisms of MTs-implied plant heavy metal tolerance/accumulation and for developing sugarcane phytoremediator varieties.
Acta Agronomica Sinica | 2009
Youxiong Que; Zhi-Xia Yang; Xu Liping; Rukai Chen
Abstract The objective of this study was to survey the molecular mechanism of resistance to sugarcane smut (Ustilago scitaminea Syd.). Two sugarcane (Saccharum officinarum complex) varieties NCo376 with high resistance and F134 with susceptibility were infected by U. scitaminea and the genes associated with the smut resistance were detected with 12 anchored primers and 8 random primers via differential display reverse transcription PCR (DDRT-PCR). Seven differentially expressed fragments were obtained through cloning, sequencing, and semiquantitative RT-PCR validation. The results of Blast in GenBank showed that they shared high homology (35–99%) with cytochrome C oxidase (CCO) gene, ribosomal protein gene, NAD-dependent malic enzyme gene, aminotransferase gene, binding protein gene, RNA polymerase specific transcription initation factor and retrotransposon. The results of semiquantitative RT-PCR showed that CCO gene expression was regulated by U. scitaminea and salicylic acid, and was independent of H2O2. Besides, CCO gene was expressed in root, stalk, and leaf of sugarcane at relatively low levels. Thereby, the phytoalexin induced by CCO gene was inferred to inhibit the pathogen after infection.
PLOS ONE | 2014
Zhenyue Lin; Shiqiang Xu; Youxiong Que; Jihua Wang; Jack C. Comstock; Jinjin Wei; Per H. McCord; Baoshan Chen; Rukai Chen; Muqing Zhang
Background Pokkah boeng disease caused by the Fusarium species complex results in significant yield losses in sugarcane. Thus, the rapid and accurate detection and identification of the pathogen is urgently required to manage and prevent the spreading of sugarcane pokkah boeng. Methods A total of 101 isolates were recovered from the pokkah boeng samples collected from five major sugarcane production areas in China throughout 2012 and 2013. The causal pathogen was identified by morphological observation, pathogenicity test, and phylogenetic analysis based on the fungus-conserved rDNA-ITS. Species-specific TaqMan real-time PCR and conventional PCR methods were developed for rapid and accurate detection of the causal agent of sugarcane pokkah boeng. The specificity and sensitivity of PCR assay were also evaluated on a total of 84 isolates of Fusarium from China and several isolates from other fungal pathogens of Sporisorium scitamineum and Phoma sp. and sugarcane endophyte of Acremonium sp. Result Two Fusarium species (F. verticillioides and F. proliferatum) that caused sugarcane pokahh boeng were identified by morphological observation, pathogenicity test, and phylogenetic analysis. Species-specific TaqMan PCR and conventional PCR were designed and optimized to target their rDNA-ITS regions. The sensitivity of the TaqMan PCR was approximately 10 pg of fungal DNA input, which was 1,000-fold over conventional PCR, and successfully detected pokkah boeng in the field-grown sugarcane. Conclusions/Significance This study was the first to identify two species, F. verticillioides and F. proliferatum, that were causal pathogens of sugarcane pokkah boeng in China. It also described the development of a species-specific PCR assay to detect and confirm these pathogens in sugarcane plants from mainland China. This method will be very useful for a broad range of research endeavors as well as the regulatory response and management of sugarcane pokkah boeng.