Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shixia Liu is active.

Publication


Featured researches published by Shixia Liu.


PLOS ONE | 2014

Tomato NAC Transcription Factor SlSRN1 Positively Regulates Defense Response against Biotic Stress but Negatively Regulates Abiotic Stress Response

Bo Liu; Zhigang Ouyang; Yafen Zhang; Xiaohui Li; Yongbo Hong; Lei Huang; Shixia Liu; Huijuan Zhang; Dayong Li; Fengming Song

Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1). SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst) DC3000, leading to 6–8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.


Frontiers in Plant Science | 2015

Arabidopsis AtERF15 positively regulates immunity against Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea.

Huijuan Zhang; Lei Huang; Yi Dai; Shixia Liu; Yongbo Hong; Limei Tian; Lihong Huang; Zhongye Cao; Dayong Li; Fengming Song

Upon pathogen infection, activation of immune response requires effective transcriptional reprogramming that regulates inducible expression of a large set of defense genes. A number of ethylene-responsive factor transcription factors have been shown to play critical roles in regulating immune responses in plants. In the present study, we explored the functions of Arabidopsis AtERF15 in immune responses against Pseudomonas syringae pv. tomato (Pst) DC3000, a (hemi)biotrophic bacterial pathogen, and Botrytis cinerea, a necrotrophic fungal pathogen. Expression of AtERF15 was induced by infection of Pst DC3000 and B. cinerea and by treatments with salicylic acid (SA) and methyl jasmonate. Biochemical assays demonstrated that AtERF15 is a nucleus-localized transcription activator. The AtERF15-overexpressing (AtERF15-OE) plants displayed enhanced resistance while the AtERF15-RNAi plants exhibited decreased resistance against Pst DC3000 and B. cinerea. Meanwhile, Pst DC3000- or B. cinerea-induced expression of defense genes was upregulated in AtERF15-OE plants but downregulated in AtERF15-RNAi plants, as compared to the expression in wild type plants. In response to infection with B. cinerea, the AtERF15-OE plants accumulated less reactive oxygen species (ROS) while the AtERF15-RNAi plants accumulated more ROS. The flg22- and chitin-induced oxidative burst was abolished and expression levels of the pattern-triggered immunity-responsive genes AtFRK1 and AtWRKY53 were suppressed in AtER15-RNAi plants upon treatment with flg22 or chitin. Furthermore, SA-induced defense response was also partially impaired in the AtERF15-RNAi plants. These data demonstrate that AtERF15 is a positive regulator of multiple layers of the immune responses in Arabidopsis.


Frontiers in Plant Science | 2015

Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress

Xiaohui Li; Huijuan Zhang; Limei Tian; Lei Huang; Shixia Liu; Dayong Li; Fengming Song

NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.


BMC Plant Biology | 2015

Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.

Yafen Zhang; Dayong Li; Huijuan Zhang; Yongbo Hong; Lei Huang; Shixia Liu; Xiaohui Li; Zhigang Ouyang; Fengming Song

BackgroundHistone H2B monoubiquitination pathway has been shown to play critical roles in regulating growth/development and stress response in Arabidopsis. In the present study, we explored the involvement of the tomato histone H2B monoubiquitination pathway in defense response against Botrytis cinerea by functional analysis of SlHUB1 and SlHUB2, orthologues of the Arabidopsis AtHUB1/AtHUB2.MethodsWe used the TRV-based gene silencing system to knockdown the expression levels of SlHUB1 or SlHUB2 in tomato plants and compared the phenotype between the silenced and the control plants after infection with B. cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000. Biochemical and interaction properties of proteins were examined using in vitro histone monoubiquitination and yeast two-hybrid assays, respectively. The transcript levels of genes were analyzed by quantitative real time PCR (qRT-PCR).ResultsThe tomato SlHUB1 and SlHUB2 had H2B monoubiquitination E3 ligases activity in vitro and expression of SlHUB1 and SlHUB2 was induced by infection of B. cinerea and Pst DC3000 and by treatment with salicylic acid (SA) and 1-amino cyclopropane-1-carboxylic acid (ACC). Silencing of either SlHUB1 or SlHUB2 in tomato plants showed increased susceptibility to B. cinerea, whereas silencing of SlHUB1 resulted in increased resistance against Pst DC3000. SlMED21, a Mediator complex subunit, interacted with SlHUB1 but silencing of SlMED21 did not affect the disease resistance to B. cinerea and Pst DC3000. The SlHUB1- and SlHUB2-silenced plants had thinner cell wall but increased accumulation of reactive oxygen species (ROS), increased callose deposition and exhibited altered expression of the genes involved in phenylpropanoid pathway and in ROS generation and scavenging system. Expression of genes in the SA-mediated signaling pathway was significantly upregulated, whereas expression of genes in the jasmonic acid (JA)/ethylene (ET)-mediated signaling pathway were markedly decreased in SlHUB1- and SlHUB2-silenced plants after infection of B. cinerea.ConclusionVIGS-based functional analyses demonstrate that both SlHUB1 and SlHUB2 contribute to resistance against B. cinerea most likely through modulating the balance between the SA- and JA/ET-mediated signaling pathways.


BMC Plant Biology | 2015

Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000

Dayong Li; Huijuan Zhang; Qiuming Song; Lu Wang; Shixia Liu; Yongbo Hong; Lei Huang; Fengming Song

BackgroundMatrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases. MMPs have been characterized in detail in mammals and shown to play key roles in many physiological and pathological processes. Although MMPs in some plant species have been identified, the function of MMPs in biotic stress responses remains elusive.ResultsA total of five MMP genes were identified in tomato genome. qRT-PCR analysis revealed that expression of Sl-MMP genes was induced with distinct patterns by infection of Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 and by treatment with defense-related hormones such as salicylic acid, jasmonic acid and ethylene precursor 1-amino cyclopropane-1-carboxylic acid. Virus-induced gene silencing (VIGS)-based knockdown of individual Sl-MMPs and disease assays indicated that silencing of Sl3-MMP resulted in reduced resistance to B. cinerea and Pst DC3000, whereas silencing of other four Sl-MMPs did not affect the disease resistance against these two pathogens. The Sl3-MMP-silenced tomato plants responded with increased accumulation of reactive oxygen species and alerted expression of defense genes after infection of B. cinerea. Transient expression of Sl3-MMP in leaves of Nicotiana benthamiana led to an enhanced resistance to B. cinerea and upregulated expression of defense-related genes. Biochemical assays revealed that the recombinant mature Sl3-MMP protein had proteolytic activities in vitro with distinct preferences for specificity of cleavage sites. The Sl3-MMP protein was targeted onto the plasma membrane of plant cells when transiently expressed in onion epidermal cells.ConclusionVIGS-based knockdown of Sl3-MMP expression in tomato and gain-of-function transient expression of Sl3-MMP in N. benthamiana demonstrate that Sl3-MMP functions as a positive regulator of defense response against B. cinerea and Pst DC3000.


Frontiers in Plant Science | 2015

Co-silencing of tomato S-adenosylhomocysteine hydrolase genes confers increased immunity against Pseudomonas syringae pv. tomato DC3000 and enhanced tolerance to drought stress

Xiaohui Li; Lei Huang; Yongbo Hong; Yafen Zhang; Shixia Liu; Dayong Li; Huijuan Zhang; Fengming Song

S-adenosylhomocysteine hydrolase (SAHH), catalyzing the reversible hydrolysis of S-adenosylhomocysteine (SAH) to adenosine and homocysteine, is a key enzyme that maintain the cellular methylation potential in all organisms. We report here the biological functions of tomato SlSAHHs in stress response. The tomato genome contains three SlSAHH genes that encode SlSAHH proteins with high level of sequence identity. qRT-PCR analysis revealed that SlSAHHs responded with distinct expression induction patterns to Pseudomonas syringae pv. tomato (Pst) DC3000 and Botrytis cinerea as well as to defense signaling hormones such as salicylic acid, jasmonic acid and a precursor of ethylene. Virus-induced gene silencing-based knockdown of individual SlSAHH gene did not affect the growth performance and the response to Pst DC3000. However, co-silencing of three SlSAHH genes using a conserved sequence led to significant inhibition of vegetable growth. The SlSAHH-co-silenced plants displayed increased resistance to Pst DC3000 but did not alter the resistance to B. cinerea. Co-silencing of SlSAHHs resulted in constitutively activated defense responses including elevated SA level, upregulated expression of defense-related and PAMP-triggered immunity marker genes and increased callose deposition and H2O2 accumulation. Furthermore, the SlSAHH-co-silenced plants also exhibited enhanced drought stress tolerance although they had relatively small roots. These data demonstrate that, in addition to the functions in growth and development, SAHHs also play important roles in regulating biotic and abiotic stress responses in plants.


International Journal of Molecular Sciences | 2015

Stress-Responsive Expression, Subcellular Localization and Protein–Protein Interactions of the Rice Metacaspase Family

Lei Huang; Huijuan Zhang; Yongbo Hong; Shixia Liu; Dayong Li; Fengming Song

Metacaspases, a class of cysteine-dependent proteases like caspases in animals, are important regulators of programmed cell death (PCD) during development and stress responses in plants. The present study was focused on comprehensive analyses of expression patterns of the rice metacaspase (OsMC) genes in response to abiotic and biotic stresses and stress-related hormones. Results indicate that members of the OsMC family displayed differential expression patterns in response to abiotic (e.g., drought, salt, cold, and heat) and biotic (e.g., infection by Magnaporthe oryzae, Xanthomonas oryzae pv. oryzae and Rhizoctonia solani) stresses and stress-related hormones such as abscisic acid, salicylic acid, jasmonic acid, and 1-amino cyclopropane-1-carboxylic acid (a precursor of ethylene), although the responsiveness to these stresses or hormones varies to some extent. Subcellular localization analyses revealed that OsMC1 was solely localized and OsMC2 was mainly localized in the nucleus. Whereas OsMC3, OsMC4, and OsMC7 were evenly distributed in the cells, OsMC5, OsMC6, and OsMC8 were localized in cytoplasm. OsMC1 interacted with OsLSD1 and OsLSD3 while OsMC3 only interacted with OsLSD1 and that the zinc finger domain in OsMC1 is responsible for the interaction activity. The systematic expression and biochemical analyses of the OsMC family provide valuable information for further functional studies on the biological roles of OsMCs in PCD that is related to abiotic and biotic stress responses.


BMC Plant Biology | 2015

Characterization, expression patterns and functional analysis of the MAPK and MAPKK genes in watermelon (Citrullus lanatus)

Qiuming Song; Dayong Li; Yi Dai; Shixia Liu; Lei Huang; Yongbo Hong; Huijuan Zhang; Fengming Song

BackgroundMitogen-activated protein kinase (MAPK) cascades, which consist of three functionally associated protein kinases, namely MEKKs, MKKs and MPKs, are universal signaling modules in all eukaryotes and have been shown to play critical roles in many physiological and biochemical processes in plants. However, little or nothing is known about the MPK and MKK families in watermelon.ResultsIn the present study, we performed a systematic characterization of the ClMPK and ClMKK families including the identification and nomenclature, chromosomal localization, phylogenetic relationships, ClMPK-ClMKK interactions, expression patterns in different tissues and in response to abiotic and biotic stress and transient expression-based functional analysis for their roles in disease resistance. Genome-wide survey identified fifteen ClMPK and six ClMKK genes in watermelon genome and phylogenetic analysis revealed that both of the ClMPK and ClMKK families can be classified into four distinct groups. Yeast two-hybrid assays demonstrated significant interactions between members of the ClMPK and ClMKK families, defining putative ClMKK2-1/ClMKK6-ClMPK4-1/ClMPK4-2/ClMPK13 and ClMKK5-ClMPK6 cascades. Most of the members in the ClMPK and ClMKK families showed differential expression patterns in different tissues and in response to abiotic (e.g. drought, salt, cold and heat treatments) and biotic (e.g. infection of Fusarium oxysporum f. sp. niveum) stresses. Transient expression of ClMPK1, ClMPK4-2 and ClMPK7 in Nicotiana benthamiana resulted in enhanced resistance to Botrytis cinerea and upregulated expression of defense genes while transient expression of ClMPK6 and ClMKK2-2 led to increased susceptibility to B. cinerea. Furthermore, transient expression of ClMPK7 also led to hypersensitive response (HR)-like cell death and significant accumulation of H2O2 in N. benthamiana.ConclusionWe identified fifteen ClMPK and six ClMKK genes from watermelon and analyzed their phylogenetic relationships, expression patterns and protein-protein interactions and functions in disease resistance. Our results demonstrate that ClMPK1, ClMPK4-2 and ClMPK7 positively but ClMPK6 and ClMKK2-2 negatively regulate the resistance to B. cinerea when transiently expressed in N. benthamiana and that ClMPK7 functions as a regulator of HR-like cell death through modulating the generation of H2O2.


Frontiers in Plant Science | 2016

Virus-Induced Gene Silencing-Based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato

Huijuan Zhang; Yongbo Hong; Lei Huang; Shixia Liu; Limei Tian; Yi Dai; Zhongye Cao; Lihong Huang; Dayong Li; Fengming Song

Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development, and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs, and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs, and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 as well as to defense signaling hormones (e.g., salicylic acid, jasmonic acid, and a precursor of ethylene). Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4, or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7, or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7, and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato.


Frontiers in Plant Science | 2016

Tomato SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3, Members of B3 Group of ERF Family, Are Required for Resistance to Botrytis cinerea

Zhigang Ouyang; Shixia Liu; Lihong Huang; Yongbo Hong; Xiaohui Li; Lei Huang; Yafen Zhang; Huijuan Zhang; Dayong Li; Fengming Song

The Ethylene-Responsive Factors (ERFs) comprise a large family of transcriptional factors that play critical roles in plant immunity. Gray mold disease caused by Botrytis cinerea, a typical necrotrophic fungal pathogen, is the serious disease that threatens tomato production worldwide. However, littler is known about the molecular mechanism regulating the immunity to B. cinerea in tomato. In the present study, virus-induced gene silencing (VIGS)-based functional analyses of 18 members of B3 group (also called Group IX) in tomato ERF family were performed to identify putative ERFs that are involved in disease resistance against B. cinerea. VIGS-based silencing of either SlERF.B1 or SlERF.C2 had lethal effect while silencing of SlERF.A3 (Pit4) significantly suppressed vegetative growth of tomato plants. Importantly, silencing of SlERF.A1, SlERF.A3, SlERF.B4, or SlERF.C3 resulted in increased susceptibility to B. cinerea, attenuated the B. cinerea-induced expression of jasmonic acid/ethylene-mediated signaling responsive defense genes and promoted the B. cinerea-induced H2O2 accumulation. However, silencing of SlERF.A3 also decreased the resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 but silencing of SlERF.A1, SlERF.B4 or SlERF.C3 did not affect the resistance to this bacterial pathogen. Expression of SlERF.A1, SlERF.A3, SlERF.B4, or SlERF.C3 was induced by B. cinerea and by defense signaling hormones such as salicylic acid, methyl jasmonate, and 1-aminocyclopropane-1-carboxylic acid (an ethylene precursor). SlERF.A1, SlERF.B4, SlERF.C3, and SlERF.A3 proteins were found to localize in nucleus of cells and possess transactivation activity in yeasts. These data suggest that SlERF.A1, SlERF.B4, and SlERF.C3, three previously uncharacterized ERFs in B3 group, and SlERF.A3, a previously identified ERF with function in immunity to Pst DC3000, play important roles in resistance against B. cinerea in tomato.

Collaboration


Dive into the Shixia Liu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Dai

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge