Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shixiang Zong is active.

Publication


Featured researches published by Shixiang Zong.


Microscopy Research and Technique | 2013

Scanning electron microscopy analysis of the cephalic sensilla of Chrysolina aeruginosa Fald. (Coleoptera, Chrysomelidae)

Lu Zhang; Li-li Ren; Youqing Luo; Shixiang Zong

Chrysolina aeruginosa Fald. (Coleoptera, Chrysomelidae) is an important pest of Artemisia ordosica Krasch. In recent years, this phytophagous beetle has spread rapidly throughout northwest China, which has led to mass mortalities of the A. ordosica. This pest has caused great damage to the local ecology. To address this problem, this study compared the sensilla types and their densities on the antennae, maxillary palps, and labial palps of C. aeruginosa. Six different types of sensilla were observed on the antennae using scanning electron microscopy, i.e., sensilla chaetica, sensilla trichodea, sensilla basiconica, sensilla coeloconica, sensilla styloconica, and Böhm bristles. Sensilla chaetica were the main sensilla on the antennae. There was a significant difference in the distribution and density of sensilla trichodea between males and females. Sensilla basiconica were distributed from the fifth to the ninth flagellomeres. Sensilla coeloconica and sensilla styloconica were usually found from the fifth to the eighth flagellomeres. Böhm bristles were found only on the terminal region of the scape and pedicel. Sensilla chaetica and sensilla twig basiconica were observed on the maxillary and labial palps. Sensilla chaetica were distributed all over the maxillary and labial palps. Sensilla twig basiconica were located in the distal areas of these two types of palps. In this study, we also discussed the responses of C. aeruginosa to the volatile semiochemicals produced by their host plants and the behaviours exhibited during host and habitat selection. Microsc. Res. Tech. 76:423–431, 2013.


PLOS ONE | 2015

Potential Distribution Predicted for Rhynchophorus ferrugineus in China under Different Climate Warming Scenarios.

Xuezhen Ge; Shanyong He; Tao Wang; Wei Yan; Shixiang Zong

As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.


Microscopy Research and Technique | 2012

Scanning electron microscopy of antennal sensible of Anoplistes halodendri halodendri and Anoplistes halodendri ephippium (Coleoptera: Cerambycidae)

Xinhai Liu; Youqing Luo; Chuanjian Cao; Shixiang Zong

Anoplistes halodendri halodendri (Pallas, 1776) and Anoplistes halodendri ephippium (Stevens and Dalman, 1817) are two subspecies of the longicorn beetle A. halodendri (Coleoptera, Cerambycidae). In the recent years, these subspecies have been spreading rapidly in Hippophae rhamnoides and Hedysarum scoparium shrubberies in the Chinese provinces of Shanxi and Kingie, causing mass mortality of these shrubberies species and consequently leading to great damage to local ecological environment construction as well as high economic, ecological, and societal losses. To control their hazards effectively, here, we study and compare the types, densities, and distribution of antennal sensilla of A. h. halodendri and A. h. ephippium using scanning electron microscopy. Eight sensilla types were observed on the antennae of these two subspecies, including placoid sensilla (Ps), chaetica sensilla (ch) (types I–III), sensilla basiconica (b) (types I and II), sensilla gemmiformium (G), and auricillica sensilla (au). Ps predominated on the antennae of both A. h. halodendri and A. h. ephippium, followed by b and ch, and G and au. There were differences between the subspecies in the distribution and density of the different sensilla types, with ch I being found exclusively on the antennae of A. h. ephippium and b I and au on the antennae of A. h. halodendri only. With the exception of Ps, the densities of ch II, ch III, b II, and G on the antennae of A. h. halodendri were much higher than on the antennae of A. h. ephippium. These results provide sufficient evidence to clarify the receptive mechanisms used by these two subspecies of longicorn beetles and their responses to volatile semiochemicals released by their host plants as well as discuss their differences with respect to host and habitat selection. Microsc. Res. Tech. 2011.


Bulletin of Entomological Research | 2015

Areas of potential suitability and survival of Dendroctonus valens in China under extreme climate warming scenario.

Shanyong He; Xuezhen Ge; T. Wang; Wen Jb; Shixiang Zong

The areas in China with climates suitable for the potential distribution of the pest species red turpentine beetle (RTB) Dendroctonus valens LeConte (Coleoptera: Scolytidae) were predicted by CLIMEX based on historical climate data and future climate data with warming estimated. The model used a historical climate data set (1971-2000) and a simulated climate data set (2010-2039) provided by the Tyndall Centre for Climate Change (TYN SC 2.0). Based on the historical climate data, a wide area was available in China with a suitable climate for the beetle in which every province might contain suitable habitats for this pest, particularly all of the southern provinces. The northern limit of the distribution of the beetle was predicted to reach Yakeshi and Elunchun in Inner Mongolia, and the western boundary would reach to Keerkezi in Xinjiang Province. Based on a global-warming scenario, the area with a potential climate suited to RTB in the next 30 years (2010-2039) may extend further to the northeast. The northern limit of the distribution could reach most parts of south Heilongjiang Province, whereas the western limit would remain unchanged. Combined with the tendency for RTB to spread, the variation in suitable habitats within the scenario of extreme climate warming and the multiple geographical elements of China led us to assume that, within the next 30 years, RTB would spread towards the northeast, northwest, and central regions of China and could be a potentially serious problem for the forests of China.


Scientific Reports | 2017

Predicting the potential distribution in China of Euwallacea fornicates (Eichhoff) under current and future climate conditions

Xuezhen Ge; Chao Jiang; Linghong Chen; Shuang Qiu; Yuxiang Zhao; Tao Wang; Shixiang Zong

Euwallacea fornicatus (Eichhoff) is an important forest pest that has caused serious damage in America and Vietnam. In 2014, it attacked forests of Acer trialatum in the Yunnan province of China, creating concern in China’s Forestry Bureau. We used the CLIMEX model to predict and compare the potential distribution for E. fornicates in China under current (1981–2010) and projected climate conditions (2011–2040) using one scenario (RCP8.5) and one global climate model (GCM), CSIRO-Mk3-6-0. Under both current and future climate conditions, the model predicted E. fornicates to be mainly distributed in the south of China. Comparing distributions under both climate conditions showed that the area of potential distribution was projected to increase (mainly because of an increase in favourable habitat) and shift to the north. Our results help clarify the potential effect of climate change on the range of this forest pest and provide a reference and guide to facilitate its control in China.


PLOS ONE | 2014

Similar metabolic changes induced by HIPVs exposure as herbivore in Ammopiptanthus mongolicus.

Jingru Sun; Xiao Zhang; Chuanjian Cao; Xindi Mei; Ningning Wang; Suli Yan; Shixiang Zong; Youqing Luo; Haijun Yang; Yingbai Shen

Herbivore-induced plant volatiles (HIPVs) are important compounds to prim neighboring undamaged plants; however, the mechanism for this priming process remains unclear. To reveal metabolic changes in plants exposed to HIPVs, metabolism of leaves and roots of Ammopiptanthus mongolicus seedlings exposed to HIPVs released from conspecific plants infested with larvae of Orgyia ericae were analyzed together with control and infested seedlings using nuclear magnetic resonance (NMR)-based metabolic technology and multi variate data analysis. Results presented showed that HIPVs exposure led to similar but specific metabolic changes compared with those induced by infestation in both leaves and roots. Furthermore, both HIPVs exposure and herbivore attack resulted in metabolic changes involving a series of primary and secondary metabolites in both leaves and roots. Taken together, these results suggested that priming of yet-damaged plants may be achieved by reconfiguring metabolic pathways in leaves and roots to make similar concentrations for all metabolites as those in seedlings infested. Therefore, we propose that improved readiness of defense induction of primed plants toward subsequent herbivore attack may be based on the similar metabolic profiling induced by HIPVs exposure as those caused by herbivore.


Plant Physiology and Biochemistry | 2013

Metabolites of Ammopiptanthus mongolicus induced by Orgyia ericae attack and mechanical wounding

Jingru Sun; Haijun Yang; Ting Zhang; Chuanjian Cao; Shixiang Zong; Youqing Luo; Yingbai Shen

In plants attacked by insects, metabolic changes can reflect the direct and indirect ability of those plants to resist infestation. However, the metabolic pathways involved in this process remain unclear, especially for plants which belong to ancient Tertiary relict taxon. To analyze the changes in metabolites and identify specific metabolic patterns induced by herbivorous and continuous mechanical wounding, the metabolism of Ammopiptanthus mongolicus seedlings damaged by Orgyia ericae Germar or continuous mechanical wounding were analyzed using nuclear magnetic resonance (NMR) combined with multivariate data analysis (MVDA). Principal component analysis (PCA) and orthogonal signal correction projections to latent structure discriminate analysis (OPLS-DA) showed that O. ericae feeding and mechanical wounding induced different changes in the metabolic profile of A. mongolicus both in local and systemic leaves. O. ericae feeding was associated with higher concentrations of many primary and secondary metabolites in local and systemic leaves than continuous mechanical wounding. In this way, the response of A. mongolicus to wounding was shown to be both specific to the metabolism, systemic, and to involve both primary and secondary metabolic pathways.


Entomological Research | 2017

Comparative morphology of sensilla on antenna, maxillary palp and labial palp of larvae of white‐spotted and yellow‐spotted Asian long‐horned beetle, Anoplophora glabripennis Motschulsky (Coleoptera: Cerambycidae)

Yuchao Yang; Lili Xu; Lili Ren; Zhichun Xu; Shixiang Zong

The Asian long‐horned beetle (ALB) is one of the most important wood‐boring insects worldwide that damages broad‐leaved trees, primarily poplar, willow, elm and maple. Based on the color of the spots on the elytra, the beetles are separated into white‐spotted (ALB‐W) and yellow‐spotted (ALB‐Y) Asian long‐horned beetles. In order to clarify the morphology of sensilla on antenna, maxillary palp and labial palp of ALB‐W and ALB‐Y larvae, we studied the typology, morphology, number and distribution of the sensilla by scanning electron microscopy. The results showed that: (i) the antennae of two biotypes had five types of sensilla, including three types of sensilla basiconica (b.) and two types of sensilla twig basiconica (s.tb); numbers of b.1, b.2, b.3 and s.tb1 on antenna were not significantly different (P > 0.05) between two biotypes, and the numbers of s.tb2 were significantly different (P < 0.05); (ii) the maxillary palp of two biotypes had four types of sensilla, including sensilla styloconica (st.), two types of s.tb and digitiform sensilla (ds.); the numbers of st. and ds. on the maxillary palp were not significantly different (P > 0.05) between two biotypes, and the numbers of s.tb1 and s.tb2 were significantly different (P < 0.05); (iii) the labial palp of two biotypes had four types of sensilla, including b., st. and two types of s.tb, and the numbers of b.3, st., s.tb1 and s.tb2 on the labial palp were not significantly different (P > 0.05) between two biotypes. We discuss the relationships between sensilla and damage caused by the larvae inside the host trees.


Microscopy Research and Technique | 2014

Antennal sensilla and ovipositor morphology of the European birch sawfly Arge pullata Zadd (Hymenoptera: Tenthredinidae, Argidae)

Lu Zhang; Yu-qian Feng; Lili Ren; Youqing Luo; Shixiang Zong

Arge pullata Zadd is an important phytophagous pest that damages red birch Betula albo‐sinensis in Hubei Province, South China. Massive ecological and economic losses have been caused by this species, which threatens the ecological security of the Shennongjia Nature Reserve. To investigate the mechanoreception, chemoreception, and oviposition processes of A. pullata, scanning electron microscopy and optical confocal microscopy were used to reveal the typology, morphology, and distribution of ovipositor and antennal sensilla. The results show that A. pullata has clavate antennae and eight types of sensilla in total, including sensilla chaetica, sensilla trichodea (types 1–3), sensilla basiconica, sensilla coeloconica (types 1 and 2), and Böhms bristles. Sensilla trichodea type 1 distributed only on male antennae; the densities of sensilla trichodea type 2 and sensilla basiconica differed between the sexes. The binding pattern of ovipositor valvulae was discovered, and one type of sensilla chaetica, two types of sensory pits, and tooth‐like cones as well as two types of microtrichia were found in the ovipositor. Based on morphological evidence and research on Hymenoptera, putative functions are suggested to increase our understanding of the mechanisms by which this species finds hosts and mates, and how oviposition takes place. Microsc. Res. Tech. 77:401–409, 2014.


Scientific Reports | 2018

Author Correction: Predicting the potential distribution in China of Euwallacea fornicatus (Eichhoff) under current and future climate conditions

Xuezhen Ge; Chao Jiang; Linghong Chen; Shuang Qiu; Yuxiang Zhao; Tao Wang; Shixiang Zong

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

Collaboration


Dive into the Shixiang Zong's collaboration.

Top Co-Authors

Avatar

Lili Ren

Beijing Forestry University

View shared research outputs
Top Co-Authors

Avatar

Lili Xu

Beijing Forestry University

View shared research outputs
Top Co-Authors

Avatar

Youqing Luo

Beijing Forestry University

View shared research outputs
Top Co-Authors

Avatar

Lu Zhang

Beijing Forestry University

View shared research outputs
Top Co-Authors

Avatar

Xuezhen Ge

Beijing Forestry University

View shared research outputs
Top Co-Authors

Avatar

Yuchao Yang

Beijing Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Jiang

Beijing Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linfeng Yu

Beijing Forestry University

View shared research outputs
Researchain Logo
Decentralizing Knowledge