Shizuhiro Yamada
Iwate University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shizuhiro Yamada.
Cell and Tissue Research | 1988
Shin-ichi Mikami; Shizuhiro Yamada; Yoshihisa Hasegawa; Kaoru Miyamoto
SummaryThe localization of LHRH-containing perikarya and nerve fibers in the hypothalami of the domestic fowl and Japanese quail was investigated by means of the specific immunoperoxidase ABC method, using antisera against chicken LHRH-I ([Gln8]-LHRH), chicken GnRH-II ([His5-Trp7-Tyr8]-LHRH [2–10]) and mammalian LHRH ([Arg8]-LHRH). Chicken LHRH-I-immunoreactive perikarya were sparsely scattered in the nucleus preopticus periventricularis (POP), nucleus filiformis (FIL) and nucleus septalis medialis (SM), and in bilateral bands extending from these nuclei into the septal area in both species. A few reactive perikarya were also observed in the nucleus accumbens (Ac) and lobus parolfactorius (LPO). Numerous cLHRH-I-immunoreactive fibers were widely scattered in the preoptic, septal and tuberal areas, and were densely concentrated in the external layer of the median eminence and in organum vasculosum of the lamina terminalis (OVLT) in both species. Anti-mammalian LHRH serum cross-reacted weakly with perikarya and fibers immunoreactive to anti-cLHRH-I serum in normal chicken and quail. Anti-cGnRH-II[2–10] serum immunoreacted with magnocellular neurons distributed in the rostral end of the mesencephalon along the midline close to the nervus oculomotorius (N III). These perikarya were apparently different from cLHRH-I immunoreactive neurons. No immunoreactive cells and fibers against anti-cGnRH-II[2–10] were observed in the hypothalamus and median eminence of the chicken or quail. Anti-cGnRH-II[2–10] bound specifically with cGnRH-II. The morphological evidence suggests that cGnRH-II may not be secreted into the portal circulation to act as hypothalamic hormone.
Cell and Tissue Research | 1982
Shizuhiro Yamada; Shin-ichi Mikami; Noboru Yanaihara
SummaryThe localization of vasoactive intestinal polypeptide (VIP) in the hypothalamus of the quail has been studied by means of light- and electron-microscopic immunohistochemistry. Numerous VIP-immunoreactive perikarya are distributed in the caudal portion of the nucleus infundibularis (n. tuberis) and nucleus mamillaris lateralis, and sparse in the preoptic area, nucleus supraopticus and nucleus paraventricularis. Dense localization of immunoreactive-VIP fibers is observed in the external layer of the median eminence, in close contact with the primary portal capillaries. The main origins of these fiber terminals are VIP-immunoreactive perikarya of the nucleus infundibularis. These neurons are spindle or bipolar and extend one process to the ventricular surface and another to the external layer of median eminence. They are CSF-contacting neurons and apparently constitute the tubero-hypophysial tract that links the third ventricle and the hypophysial portal circulation. VIP-reactive neurons in the nucleus mamillaris lateralis also project axons to the external layer of the median eminence, constituting the posterior bundle of the tuberohypophysial tract. Numerous VIP-immunoreactive perikarya occur also in the nucleus accumbens/pars posterior close to the lateral ventricle. They are also CSF-contacting neurons extending a process to the lateral ventricle. There are moderate distributions of VIP-reactive fibers in the area ventralis and in the area septalis.Ultrastructurally, the immunoreactive products against VIP are found in the elementary granules, 75–115 nm in diameter, within the nerve fibers in the median eminence.
Cell and Tissue Research | 1985
Shizuhiro Yamada; Shin-ichi Mikami
SummaryImmunohistochemical localization of corticotropin-releasing factor (CRF)-like immunoreactivity in the brain of the Japanese quail was studied by means of the peroxidase anti-peroxidase (PAP) method. CRF-immunopositive perikarya of parvocellular neurons were observed mainly in the nucleus praeopticus medialis and nucleus paraventricularis. Additional perikarya were also detected in the nucleus hypothalamicus posterior medialis in the hypothalamus and in the non-hypothalamic nucleus accumbens, nucleus septalis lateralis and nucleus dorsomedialis and dorsolateralis thalami. No CRF immunoreaction was found to coexist with the vasotocin (Vt)-containing system in comparative examination of consecutive sections treated with anti-vasopressin (Vp) serum.The CRF-immunoreactive fibers were detected mainly in the external layer of the anterior median eminence but not in its posterior division. Unilateral adrenalectomy induced the marked reduction in number of the CRF immunopositive fibers in the anterior median eminence.
Cell and Tissue Research | 1986
Chifumi Yamada; Shizuhiro Yamada; Tomoyuki Ichikawa; Hideshi Kobayashi
SummaryIn three species of teleosts — carp Cyprinus carpio; grass carp Ctenopharyngodon idella; and crucian carp Carassius auratus — the caudal neurosecretory system displays small, medium-sized and large neurons. Urotensin I (UI)-immunoreactive and UI-nonreactive neurons were found in all three groups; in general, the number of the latter neurons exceeded that of the former. Noteworthy are: (i) UI-immunoreactive fibers in the caudal spinal cord and (ii) dense accumulations of UI-immunoreactive product around the capillaries of the urophysis. In two species of elasmobranchs — cat shark Heterodontus japonicas and swell shark Cephaloscyllium umbratile — neurosecretory neurons decreased in size in rostro-caudal direction. Most of the neurosecretory perikarya, their axons and the corresponding neurohemal areas were UI-immunoreactive, but a small number of secretory neurons was devoid of immunoreaction. Oxytocin, arginine vasopressin, substance P, somatostatin, neurotensin, vasoactive intestinal polypeptide and gastrin-releasing peptide were not detected in the caudal neurosecretory system of the carp.
Journal of Experimental Zoology | 1984
Shin-ichi Mikami; Shizuhiro Yamada
Cell and Tissue Research | 1981
Shizuhiro Yamada; Shin-ichi Mikami
The Japanese journal of veterinary science | 1986
Shin-ichi Mikami; Shizuka Sudo; Kazuyuki Taniguchi; Shizuhiro Yamada
Biomedical Research-tokyo | 1984
Shizuhiro Yamada; Shin-ichi Mikami; Noboru Yanaihara
The Japanese journal of veterinary science | 1986
Shin-ichi Mikami; Junichi Itoh; Kazuyuki Taniguchi; Shizuhiro Yamada
The Japanese journal of veterinary science | 1985
Shin-ichi Mikami; Kiyohiro Ichino; Shizuhiro Yamada; Kazuyuki Taniguchi