Shmma Quraishe
University of Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shmma Quraishe.
Neuroscience | 2008
Shmma Quraishe; Ayodeji A. Asuni; W.C. Boelens; Vincent O'Connor; A. Wyttenbach
The small heat shock proteins (sHsps) are a family of molecular chaperones defined by an alpha-crystallin domain that is important for sHsps oligomerization and chaperone activity. sHsps perform many physiological functions including the maintenance of the cellular cytoskeleton, the regulation of protein aggregation and modulate cell survival in a number of cell types including glial and neuronal cells. Many of these functions have been implicated in disease processes in the CNS and indeed sHsps are considered targets for disease therapy. Despite this, there is no study that systematically and comparatively characterized sHsps expression in the CNS. In the present study we have analyzed the expression of this gene family in the mouse brain by reverse-transcriptase polymerase chain reaction (RT-PCR), in situ hybridization and Western blotting. Gene expression analysis of the 10 known members of mammalian sHsps confirms the presence of 5 sHsps in the CNS. A distinct white matter specific expression pattern for HspB5 and overlapping expression of HspB1 and HspB8 in the lateral and dorsal ventricles of the brain is observed. We confirm protein expression of HspB1, HspB5, HspB6 and HspB8 in the brain. Further subcellular fractionation of brain and synaptosomes details a distinct subcompartment-specific association and detergent solubility of sHsps. This biochemical signature is indicative of an association with synaptic and other neural specializations. This observation will help one understand the functional role played by sHsps during physiology and pathology in the CNS.
Molecular Psychiatry | 2013
Shmma Quraishe; Catherine M. Cowan; Amritpal Mudher
Alzheimer’s disease (AD) is a devastating neurodegenerative disease causing irreversible cognitive decline in the elderly. There is no disease-modifying therapy for this condition and the mechanisms underpinning neuronal dysfunction and neurodegeneration are unclear. Compromised cytoskeletal integrity within neurons is reported in AD. This is believed to result from loss-of-function of the microtubule-associated protein tau, which becomes hyper-phosphorylated and deposits into neurofibrillary tangles in AD. We have developed a Drosophila model of tauopathy in which abnormal human tau mediates neuronal dysfunction characterised by microtubule destabilisation, axonal transport disruption, synaptic defects and behavioural impairments. Here we show that a microtubule-stabilising drug, NAPVSIPQ (NAP), prevents as well as reverses these phenotypes even after they have become established. Moreover, it does not alter abnormal tau levels indicating that it by-passes toxic tau altogether. Thus, microtubule stabilisation is a disease-modifying therapeutic strategy protecting against tau-mediated neuronal dysfunction, which holds great promise for tauopathies like AD.
Biochemical Society Transactions | 2012
Catherine M. Cowan; Shmma Quraishe; Amritpal Mudher
Insoluble aggregates of the microtubule-associated protein tau characterize a number of neurodegenerative diseases collectively termed tauopathies. These aggregates comprise abnormally hyperphosphorylated and misfolded tau proteins. Research in this field has traditionally focused on understanding how hyperphosphorylated and aggregated tau mediates dysfunction and toxicity in tauopathies. Recent findings from both Drosophila and rodent models of tauopathy suggest that large insoluble aggregates such as tau filaments and tangles may not be the key toxic species in these diseases. Thus some investigators have shifted their focus to study pre-filament tau species such as tau oligomers and hyperphosphorylated tau monomers. Interestingly, tau oligomers can exist in a variety of states including hyperphosphorylated and unphosphorylated forms, which can be both soluble and insoluble. It remains to be determined which of these oligomeric states of tau are causally involved in neurodegeneration and which signal the beginning of the formation of inert/protective filaments. It will be important to better understand this so that tau-based therapeutic interventions can target the most toxic tau species.
Brain Research | 2008
Patrick Garland; Shmma Quraishe; Pim J. French; Vincent O'Connor
The Microtubule-Associated Serine/Threonine Kinase family (MAST1-4, and MAST-like) is characterised by the presence of a serine/threonine kinase domain and a postsynaptic density protein-95/discs large/zona occludens-1 domain (PDZ). This latter domain gives the MAST family the capacity to scaffold its own kinase activity. In the present study we have profiled the mRNA for each member of the MAST family transcripts across various tissues, with particular focus on rodent brain. Reverse-transcriptase polymerase chain reaction (RT-PCR) has shown equivalent patterns of expression for MAST1 and 2 in multiple tissues. Both MAST3 and 4 show more distinct expression in several tissues, and MAST-like appears to be predominantly expressed in heart and testis. In situ hybridisation reveals overlapping expression of MAST1 and 2 in specific brain regions. In contrast, MAST3 shows selective expression in the striatum and cerebral cortex. MAST4 also exhibits distinct expression in oligodendrocytes of white matter containing brain regions. In keeping with previous results, this family member also shows increased expression in the hippocampus following seizure-like activity. Our analysis of MAST family expression provides support for the role of these kinases in a broad range of neural functions.
PLOS ONE | 2012
Patrick Garland; Lucy J. Broom; Shmma Quraishe; Paul D. Dalton; Paul Skipp; Tracey A. Newman; V. Hugh Perry
Axon injury and degeneration is a common consequence of diverse neurological conditions including multiple sclerosis, traumatic brain injury and spinal cord injury. The molecular events underlying axon degeneration are poorly understood. We have developed a novel method to enrich for axoplasm from rodent optic nerve and characterised the early events in Wallerian degeneration using an unbiased proteomics screen. Our detergent-free method draws axoplasm into a dehydrated hydrogel of the polymer poly(2-hydroxyethyl methacrylate), which is then recovered using centrifugation. This technique is able to recover axonal proteins and significantly deplete glial contamination as confirmed by immunoblotting. We have used iTRAQ to compare axoplasm-enriched samples from naïve vs injured optic nerves, which has revealed a pronounced modulation of proteins associated with the actin cytoskeleton. To confirm the modulation of the actin cytoskeleton in injured axons we focused on the RhoA pathway. Western blotting revealed an augmentation of RhoA and phosphorylated cofilin in axoplasm-enriched samples from injured optic nerve. To investigate the localisation of these components of the RhoA pathway in injured axons we transected axons of primary hippocampal neurons in vitro. We observed an early modulation of filamentous actin with a concomitant redistribution of phosphorylated cofilin in injured axons. At later time-points, RhoA is found to accumulate in axonal swellings and also colocalises with filamentous actin. The actin cytoskeleton is a known sensor of cell viability across multiple eukaryotes, and our results suggest a similar role for the actin cytoskeleton following axon injury. In agreement with other reports, our data also highlights the role of the RhoA pathway in axon degeneration. These findings highlight a previously unexplored area of axon biology, which may open novel avenues to prevent axon degeneration. Our method for isolating CNS axoplasm also represents a new tool to study axon biology.
Scientific Reports | 2015
Catherine M. Cowan; Shmma Quraishe; Sarah Hands; Megan Sealey; Sumeet Mahajan; Douglas W. Allan; Amritpal Mudher
Aggregation of highly phosphorylated tau is a hallmark of Alzheimer’s disease and other tauopathies. Nevertheless, animal models demonstrate that tau-mediated dysfunction/toxicity may not require large tau aggregates but instead may be caused by soluble hyper-phosphorylated tau or by small tau oligomers. Challenging this widely held view, we use multiple techniques to show that insoluble tau oligomers form in conditions where tau-mediated dysfunction is rescued in vivo. This shows that tau oligomers are not necessarily always toxic. Furthermore, their formation correlates with increased tau levels, caused intriguingly, by either pharmacological or genetic inhibition of tau kinase glycogen-synthase-kinase-3beta (GSK-3β). Moreover, contrary to common belief, these tau oligomers were neither highly phosphorylated, and nor did they contain beta-pleated sheet structure. This may explain their lack of toxicity. Our study makes the novel observation that tau also forms non-toxic insoluble oligomers in vivo in addition to toxic oligomers, which have been reported by others. Whether these are inert or actively protective remains to be established. Nevertheless, this has wide implications for emerging therapeutic strategies such as those that target dissolution of tau oligomers as they may be ineffective or even counterproductive unless they act on the relevant toxic oligomeric tau species.
International Journal of Alzheimer's Disease | 2011
Catherine M. Cowan; Megan Sealey; Shmma Quraishe; Marie-Therese Targett; Kristen Marcellus; Douglas W. Allan; Amritpal Mudher
Drosophila melanogaster is an experimentally tractable model organism that has been used successfully to model aspects of many human neurodegenerative diseases. Drosophila models of tauopathy have provided valuable insights into tau-mediated mechanisms of neuronal dysfunction and death. Here we review the findings from Drosophila models of tauopathy reported over the past ten years and discuss how they have furthered our understanding of the pathogenesis of tauopathies. We also discuss the multitude of technical advantages that Drosophila offers, which make it highly attractive as a model for such studies.
Journal of Alzheimer's Disease | 2013
Christopher Sinadinos; Shmma Quraishe; Megan Sealey; P. Benjamin Samson; Amrit Mudher; Andreas Wyttenbach
Reduction of tau phosphorylation and aggregation by manipulation of heat shock protein (HSP) molecular chaperones has received much attention in attempts to further understand and treat tauopathies such as Alzheimers disease. We examined whether endogenous HSPs are induced in Drosophila larvae expressing human tau (3R-tau) in motor neurons, and screened several chemical compounds that target the HSP system using medium-throughput behavioral analysis to assay their effects on tau-induced neuronal dysfunction in vivo. Tau-expressing larvae did not show a significant endogenous HSP induction response, whereas robust induction of hsp70 was detectable in a similar larval model of polyglutamine disease. Although pan-neuronal tau expression augmented the induction of hsp70 following heat shock, several candidate HSP inducing compounds induced hsp70 protein in mammalian cells in vitro but did not detectably induce hsp70 mRNA or protein in tau expressing larvae. The hsp90 inhibitors 17-AAG and radicicol nevertheless caused a dose-dependent reduction in total human tau levels in transgenic larvae without specifically altering tau hyperphosphorylated at S396/S404. These and several other HSP modulating compounds also failed to rescue the tau-induced larval locomotion deficit in this model. Tau pathology in tau-expressing larvae, therefore, induces weak de novo HSP expression relative to other neurodegenerative disease models, and unlike these disease models, pharmacological manipulation of the hsp90 pathway does not lead to further induction of the heat shock response. Forthcoming studies investigating the effects of HSP induction on tau-mediated dysfunction/toxicity in such models will require more robust, non-pharmacological (perhaps genetic) means of manipulating the hsp90 pathway.
Neurobiology of Disease | 2017
Megan Sealey; Ergina Vourkou; Catherine M. Cowan; Torsten Bossing; Shmma Quraishe; Sofia Grammenoudi; Efthimios M. C. Skoulakis; Amritpal Mudher
Tau exists as six closely related protein isoforms in the adult human brain. These are generated from alternative splicing of a single mRNA transcript and they differ in the absence or presence of two N-terminal and three or four microtubule binding domains. Typically all six isoforms have been considered functionally similar. However, their differential involvement in particular tauopathies raises the possibility that there may be isoform-specific differences in physiological function and pathological role. To explore this, we have compared the phenotypes induced by the 0N3R and 0N4R isoforms in Drosophila. Expression of the 3R isoform causes more profound axonal transport defects and locomotor impairments, culminating in a shorter lifespan than the 4R isoform. In contrast, the 4R isoform leads to greater neurodegeneration and impairments in learning and memory. Furthermore, the phosphorylation patterns of the two isoforms are distinct, as is their ability to induce oxidative stress. These differences are not consequent to different expression levels and are suggestive of bona fide physiological differences in isoform biology and pathological potential. They may therefore explain isoform-specific mechanisms of tau-toxicity and the differential susceptibility of brain regions to different tauopathies.
Neural Plasticity | 2018
Shmma Quraishe; Lindsey H. Forbes; Melissa R. Andrews
The extracellular environment of the central nervous system (CNS) becomes highly structured and organized as the nervous system matures. The extracellular space of the CNS along with its subdomains plays a crucial role in the function and stability of the CNS. In this review, we have focused on two components of the neuronal extracellular environment, which are important in regulating CNS plasticity including the extracellular matrix (ECM) and myelin. The ECM consists of chondroitin sulfate proteoglycans (CSPGs) and tenascins, which are organized into unique structures called perineuronal nets (PNNs). PNNs associate with the neuronal cell body and proximal dendrites of predominantly parvalbumin-positive interneurons, forming a robust lattice-like structure. These developmentally regulated structures are maintained in the adult CNS and enhance synaptic stability. After injury, however, CSPGs and tenascins contribute to the structure of the inhibitory glial scar, which actively prevents axonal regeneration. Myelin sheaths and mature adult oligodendrocytes, despite their important role in signal conduction in mature CNS axons, contribute to the inhibitory environment existing after injury. As such, unlike the peripheral nervous system, the CNS is unable to revert to a “developmental state” to aid neuronal repair. Modulation of these external factors, however, has been shown to promote growth, regeneration, and functional plasticity after injury. This review will highlight some of the factors that contribute to or prevent plasticity, sprouting, and axonal regeneration after spinal cord injury.