Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tracey A. Newman is active.

Publication


Featured researches published by Tracey A. Newman.


American Journal of Pathology | 1998

Cerebral Amyloid Angiopathy : Amyloid β Accumulates in Putative Interstitial Fluid Drainage Pathways in Alzheimer’s Disease

Roy O. Weller; Adrian Massey; Tracey A. Newman; Margaret Hutchings; Yu-Min Kuo; Alex E. Roher

Cerebral amyloid angiopathy in Alzheimers disease is characterized by deposition of amyloid beta (Abeta) in cortical and leptomeningeal vessel walls. Although it has been suggested that Abeta is derived from vascular smooth muscle, deposition of Abeta is not seen in larger cerebral vessel walls nor in extracranial vessels. In the present study, we examine evidence for the hypothesis that Abeta is deposited in periarterial interstitial fluid drainage pathways of the brain in Alzheimers disease and that this contributes significantly to cerebral amyloid angiopathy. There is firm evidence in animals for drainage of interstitial fluid from the brain to cervical lymph nodes along periarterial spaces; similar periarterial channels exist in humans. Biochemical study of 6 brains without Alzheimers disease revealed a pool of soluble Abeta in the cortex. Histology and immunocytochemistry of 17 brains with Alzheimers disease showed that Abeta accumulates five times more frequently around arteries than around veins, with selective involvement of smaller arteries. Initial deposits of Abeta occur at the periphery of arteries at the site of the putative interstitial fluid drainage pathways. These observations support the hypothesis that Abeta is deposited in periarterial interstitial fluid drainage pathways of the brain and contributes significantly to cerebral amyloid angiopathy in Alzheimers disease.


Nature Reviews Neuroscience | 2003

The impact of systemic infection on the progression of neurodegenerative disease

V. Hugh Perry; Tracey A. Newman; Colm Cunningham

In multiple sclerosis — the archetypal inflammatory response in the central nervous system — T cells and macrophages invade the brain and damage the myelin and neurons. In other chronic neurodegenerative diseases, there is an atypical inflammatory response that is characterized by large numbers of activated microglia. These macrophages are primed by components of the neuropathology but might be further activated by systemic infection, which in turn has pronounced effects on inflammation in the brain and perhaps on neurological function. There is emerging evidence to support the idea that nonspecific systemic infection or inflammation in people with existing inflammation in the brain contributes to the rate of disease progression through further activation of these already primed macrophages.


Neuropathology and Applied Neurobiology | 2008

Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology

Roxana O. Carare; M. Bernardes-Silva; Tracey A. Newman; Anton Page; James A. R. Nicoll; V.H. Perry; Roy O. Weller

Elimination of interstitial fluid and solutes plays a role in homeostasis in the brain, but the pathways are unclear. Previous work suggests that interstitial fluid drains along the walls of arteries. Aims: to define the pathways within the walls of capillaries and arteries for drainage of fluid and solutes out of the brain. Methods: Fluorescent soluble tracers, dextran (3 kDa) and ovalbumin (40 kDa), and particulate fluospheres (0.02 μm and 1.0 μm in diameter) were injected into the corpus striatum of mice. Brains were examined from 5 min to 7 days by immunocytochemistry and confocal microscopy. Results: soluble tracers initially spread diffusely through brain parenchyma and then drain out of the brain along basement membranes of capillaries and arteries. Some tracer is taken up by vascular smooth muscle cells and by perivascular macrophages. No perivascular drainage was observed when dextran was injected into mouse brains following cardiac arrest. Fluospheres expand perivascular spaces between vessel walls and surrounding brain, are ingested by perivascular macrophages but do not appear to leave the brain even following an inflammatory challenge with lipopolysaccharide or kainate. Conclusions: capillary and artery basement membranes act as ‘lymphatics of the brain’ for drainage of fluid and solutes; such drainage appears to require continued cardiac output as it ceases following cardiac arrest. This drainage pathway does not permit migration of cells from brain parenchyma to the periphery. Amyloid‐β is deposited in basement membrane drainage pathways in cerebral amyloid angiopathy, and may impede elimination of amyloid‐β and interstitial fluid from the brain in Alzheimers disease. Soluble antigens, but not cells, drain from the brain by perivascular pathways. This atypical pattern of drainage may contribute to partial immune privilege of the brain and play a role in neuroimmunological diseases such as multiple sclerosis.


Molecular Psychiatry | 2004

GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila

Amritpal Mudher; D.P. Shepherd; Tracey A. Newman; P Mildren; J P Jukes; A Squire; A Mears; S Berg; Daniel Mackay; Ayodeji A. Asuni; R Bhat; Simon Lovestone

The tauopathies are a group of disorders characterised by aggregation of the microtubule-associated protein tau and include Alzheimers disease (AD) and the fronto-temporal dementias (FTD). We have used Drosophila to analyse how tau abnormalities cause neurodegeneration. By selectively co-expressing wild-type human tau (0N3R isoform) and a GFP vesicle marker in motorneurons, we examined the consequences of tau overexpression on axonal transport in vivo. The results show that overexpression of tau disrupts axonal transport causing vesicle aggregation and this is associated with loss of locomotor function. All these effects occur without neuron death. Co-expression of constitutively active glycogen-synthase kinase-3β (GSK-3β) enhances and two GSK-3β inhibitors, lithium and AR-A014418, reverse both the axon transport and locomotor phenotypes, suggesting that the pathological effects of tau are phosphorylation dependent. These data show that tau abnormalities significantly disrupt neuronal function, in a phosphorylation-dependent manner, before the classical pathological hallmarks are evident and also suggest that the inhibition of GSK-3β might have potential therapeutic benefits in tauopathies.


Glia | 2005

Mannose receptor expression specifically reveals perivascular macrophages in normal, injured, and diseased mouse brain

Ian Galea; Karine Palin; Tracey A. Newman; Nico van Rooijen; V. Hugh Perry; Delphine Boche

Perivascular macrophages are believed to have a significant role in inflammation in the central nervous system (CNS). They express a number of different receptors that point toward functions in both innate immunity, through pathogen‐associated molecular pattern recognition, phagocytosis, and cytokine responsiveness, and acquired immunity, through antigen presentation and co‐stimulation. We are interested in the receptors that are differentially expressed by perivascular macrophages and microglia in both the normal CNS as well as in neuroinflammation and neurodegeneration. In this article we report the use of a well‐characterized monoclonal antibody, 5D3, to localize the expression of the mannose receptor to perivascular macrophages in the normal CNS and in various models of brain pathology. Mannose receptor expression was limited to perivascular, meningeal, and choroid plexus macrophages in normal, inflamed, injured, and diseased CNS. In particular, activated microglia and invading hematogenous leukocytes were mannose receptor negative while expressing the F4/80 antigen, macrosialin (CD68), FcRII (CD32), scavenger receptor (CD204), and CR3 (CD11b/CD18). Since the perivascular macrophages expressing the mannose receptor are known to be the only constitutively phagocytic cells in the normal CNS, we injected clodronate‐loaded liposomes intracerebroventricularly in control mice to deplete these cells. In these mice, there was no detectable mannose receptor expression in perivascular spaces after immunocytochemistry with the 5D3 monoclonal antibody. This finding underlines the value of the monoclonal antibody 5D3 as a tool to study murine perivascular macrophages selectively. Mannose receptor expression by macrophages located at blood‐brain (perivascular), brain‐cerebrospinal fluid (CSF) (meningeal), and CSF‐blood (choroid plexus) interfaces supports a functional role of these cells in responding to external stimuli such as infection.


Brain Behavior and Immunity | 2010

The effect of non-steroidal anti-inflammatory agents on behavioural changes and cytokine production following systemic inflammation: implications for a role of COX-1

Jessica L. Teeling; Colm Cunningham; Tracey A. Newman; V.H. Perry

Systemic inflammation gives rise to metabolic and behavioural changes, largely mediated by pro-inflammatory cytokines and prostaglandin production (PGE2) at the blood–brain barrier. Despite numerous studies, the exact biological pathways that give rise to these changes remains elusive. This study investigated the mechanisms underlying immune-to-brain communication following systemic inflammation using various anti-inflammatory agents. Mice were pre-treated with selective cyclo-oxygenase (COX) inhibitors, thromboxane synthase inhibitors or dexamethasone, followed by intra-peritoneal injection of lipopolysaccharide (LPS). Changes in body temperature, open-field activity, and burrowing were assessed and mRNA and/or protein levels of inflammatory mediators measured in serum and brain. LPS-induced systemic inflammation resulted in behavioural changes and increased production of IL-6, IL-1β and TNF-α, as well as PGE2 in serum and brain. Indomethacin and ibuprofen reversed the effect of LPS on behaviour without changing peripheral or central IL-6, IL-1β and TNF-α mRNA levels. In contrast, dexamethasone did not alter LPS-induced behavioural changes, despite complete inhibition of cytokine production. A selective COX-1 inhibitor, piroxicam, but not the selective COX-2 inhibitor, nimesulide, reversed the LPS-induced behavioural changes without affecting IL-6, IL-1β and TNF-α protein expression levels in the periphery or mRNA levels in the hippocampus. Our results suggest that the acute LPS-induced changes in burrowing and open-field activity depend on COX-1. We further show that COX-1 is not responsible for the induction of brain IL-6, IL-1β and TNF-α synthesis or LPS-induced hypothermia. Our results may have implications for novel therapeutic strategies to treat or prevent neurological diseases with an inflammatory component.


Neurobiology of Disease | 2005

Over-expression of tau results in defective synaptic transmission in Drosophila neuromuscular junctions.

Francis Chee; Amritpal Mudher; Matthew F. Cuttle; Tracey A. Newman; Daniel Mackay; Simon Lovestone; D.P. Shepherd

We have shown that over-expression of human tau (0N3R) in Drosophila larval motor neurons causes significant morphological and functional disruption to the neuromuscular junctions (NMJs). Tau-expressing NMJs are reduced in size with irregular and abnormal bouton structure. Immunocytochemical analysis shows that the abnormal NMJs still retain synaptotagmin expression and form active zones. Functionally, the NMJs exhibit abnormal endo/exocytosis as revealed by incorporation of the styryl dye FM1-43. Electrophysiological studies showed that with low frequency stimulation (1 Hz), evoked synaptic potentials produced from tau over-expressing motor neurons were indistinguishable from wild type, however, following high frequency stimulation (50 Hz), evoked synaptic potentials were significantly decreased. Analysis of the number and distribution of mitochondria showed that motor neurons over-expressing tau had a significant reduction in functional mitochondria in the presynaptic terminal. Collapsing the mitochondrial membrane potential in wild type larvae phenocopied the effects of tau over-expression on synaptic transmission. Our results demonstrate that tau over-expression in vivo cause a synaptic dysfunction, which may be caused by a reduced complement of functional mitochondria.


Annals of Neurology | 2011

Systemic Inflammation Induces Axon Injury During Brain Inflammation

Beatriz Moreno; John-Paul Jukes; Nuria Vergara-Irigaray; Oihana Errea; Pablo Villoslada; V. Hugh Perry; Tracey A. Newman

Axon injury is a key contributor to the progression of disability in multiple sclerosis (MS). Systemic infections, which frequently precede relapses in MS, have been linked to clinical progression in Alzheimers disease. There is evidence of a role for the innate immune system in MS lesions, as axonal injury is associated with macrophage activation. We hypothesize that systemic inflammation leads to enhanced axonal damage in MS as a consequence of innate immune system activation.


Experimental Neurology | 2010

Aβ exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer's disease

James L. Folwell; Catherine M. Cowan; Kiren K. Ubhi; Hassan Shiabh; Tracey A. Newman; D.P. Shepherd; Amritpal Mudher

Alzheimers disease (AD) is characterised by neurofibrillary tangles composed of hyper-phosphorylated tau, and neuritic plaques composed of misfolded amyloid peptide (Abeta(42)). It is generally believed that the hyper-phosphorylated tau and oligomeric Abeta(42) are responsible for the neuronal dysfunction and cognitive impairments that underlie the early stages of AD, but the mechanism by which they interact in the pathogenic process is not clear. Mounting evidence suggests that Abeta(42) pathology lies upstream of hyper-phosphorylated tau pathology. Similarly much is being learnt about how each protein affects neuronal function. However, the impact that either pathological protein has on neuronal dysfunction caused by the other is not extensively studied. We have investigated this in a Drosophila model of AD in which we express both phosphorylated human tau (tau(wt)) and oligomeric Abeta(42). We find that expression of tau(wt) causes neuronal dysfunction by disrupting axonal transport and synaptic structure, and that this leads to behavioural impairments and reduced lifespan. Co-expression of Abeta(42) with tau(wt) increases tau phosphorylation and exacerbates all these tau-mediated phenotypes. Treatment of tau(wt)/Abeta(42) and flies with LiCl ameliorates the exacerbating effect of Abeta(42), suggesting that GSK-3beta may be involved in the mechanism by which Abeta(42) and tau(wt) interact to cause neuronal dysfunction. Conversely to the effect of Abeta(42), mimicking the wingless signalling pathway by co-expression of dishevelled with tau(wt) reduces tau phosphorylation and suppresses the tau-mediated phenotypes. It is therefore possible to speculate that the mechanism by which Abeta(42) interacts with tau in the pathogenesis of AD is by down-regulating endogenous wnt signalling.


International Journal of Pharmaceutics | 2010

Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: potential tool for drug delivery.

Soumen Roy; Alex Johnston; Tracey A. Newman; Rudolf Glueckert; Jozsef Dudas; Mario Bitsche; Elisa Corbacella; Gunde Rieger; Alessandro Martini; Anneliese Schrott-Fischer

Cell specific targeting is an emerging field in nanomedicine. Homing of the multifunctional nanoparticles (MFNPs) is achieved by the conjugation of targeting moieties on the nanoparticle surface. The inner ear is an attractive target for new drug delivery strategies as it is hard to access and hearing loss is a significant worldwide problem. In this work we investigated the utility of a Nerve Growth Factor-derived peptide (hNgf_EE) functionalized nanoparticles (NPs) to target cells of the inner ear. These functionalized NPs were introduced to organotypic explant cultures of the mouse inner ear and to PC-12 rat pheochromocytoma cells. The NPs did not show any signs of toxicity. Specific targeting and higher binding affinity to spiral ganglion neurons, Schwann cells and nerve fibers of the explant cultures were achieved through ligand mediated multivalent binding to tyrosine kinase receptors and to p75 neurotrophin receptors. Unspecific uptake of NPs was investigated using NPs conjugated with scrambled hNgf_EE peptide. Our results indicate a selective cochlear cell targeting by MFNPs, which may be a potential tool for cell specific drug and gene delivery to the inner ear.

Collaboration


Dive into the Tracey A. Newman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amritpal Mudher

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

D.P. Shepherd

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Carl Verschuur

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

V. Hugh Perry

University of Southampton

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy O. Weller

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Shmma Quraishe

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Edoardo Scarpa

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Ian Galea

University of Southampton

View shared research outputs
Researchain Logo
Decentralizing Knowledge