Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shobini Jayaraman is active.

Publication


Featured researches published by Shobini Jayaraman.


Biochemistry | 2008

Correlation of Structural Stability with Functional Remodeling of High-Density Lipoproteins: The Importance of Being Disordered†

Madhumita Guha; Xuan Gao; Shobini Jayaraman; Olga Gursky

High-density lipoproteins (HDLs) are protein-lipid assemblies that remove excess cell cholesterol and prevent atherosclerosis. HDLs are stabilized by kinetic barriers that decelerate protein dissociation and lipoprotein fusion. We propose that similar barriers modulate metabolic remodeling of plasma HDLs; hence, changes in particle composition that destabilize HDLs and accelerate their denaturation may accelerate their metabolic remodeling. To test this notion, we correlate existing reports on HDL-mediated cell cholesterol efflux and esterification, which are obligatory early steps in cholesterol removal, with our kinetic studies of HDL stability. The results support our hypothesis and show that factors accelerating cholesterol efflux and esterification in model discoidal lipoproteins (including reduced protein size, reduced fatty acyl chain length, and/or increased level of cis unsaturation) destabilize lipoproteins and accelerate their fusion and apolipoprotein dissociation. Oxidation studies of plasma spherical HDLs show a similar trend: mild oxidation by Cu(2+) or OCl(-) accelerates cell cholesterol efflux, protein dissociation, and HDL fusion, while extensive oxidation inhibits these reactions. Consequently, moderate destabilization may be beneficial for HDL functions by facilitating insertion of cholesterol and lipophilic enzymes, promoting dissociation of lipid-poor apolipoproteins, which are primary acceptors of cell cholesterol, and thereby accelerating HDL metabolism. Therefore, HDL stability must be delicately balanced to maintain the structural integrity of the lipoprotein assembly and ensure structural specificity necessary for interactions of HDL with its metabolic partners, while facilitating rapid HDL remodeling and turnover at key junctures of cholesterol transport. The inverse correlation between HDL stability and remodeling illustrates the functional importance of structural disorder in macromolecular assemblies stabilized by kinetic barriers.


FEBS Journal | 2014

Amyloidogenic mutations in human apolipoprotein A-I are not necessarily destabilizing - a common mechanism of apolipoprotein A-I misfolding in familial amyloidosis and atherosclerosis.

Madhurima Das; Xiaohu Mei; Shobini Jayaraman; David Atkinson; Olga Gursky

High‐density lipoproteins and their major protein, apolipoprotein A‐I (apoA‐I), remove excess cellular cholesterol and protect against atherosclerosis. However, in acquired amyloidosis, nonvariant full‐length apoA‐I deposits as fibrils in atherosclerotic plaques; in familial amyloidosis, N‐terminal fragments of variant apoA‐I deposit in vital organs, damaging them. Recently, we used the crystal structure of Δ(185–243)apoA‐I to show that amyloidogenic mutations destabilize apoA‐I and increase solvent exposure of the extended strand 44–55 that initiates β‐aggregation. In the present study, we test this hypothesis by exploring naturally occurring human amyloidogenic mutations, W50R and G26R, within or close to this strand. The mutations caused small changes in the proteins α‐helical content, stability, proteolytic pattern and protein–lipid interactions. These changes alone were unlikely to account for amyloidosis, suggesting the importance of other factors. Sequence analysis predicted several amyloid‐prone segments that can initiate apoA‐I misfolding. Aggregation studies using N‐terminal fragments verified this prediction experimentally. Three predicted N‐terminal amyloid‐prone segments, mapped on the crystal structure, formed an α‐helical cluster. Structural analysis indicates that amyloidogenic mutations or Met86 oxidation perturb native packing in this cluster. Taken together, the results suggest that structural perturbations in the amyloid‐prone segments trigger α‐helix to β‐sheet conversion in the N‐terminal ~ 75 residues forming the amyloid core. Polypeptide outside this core can be proteolysed to form 9–11 kDa N‐terminal fragments found in familial amyloidosis. Our results imply that apoA‐I misfolding in familial and acquired amyloidosis follows a similar mechanism that does not require significant structural destabilization or proteolysis. This novel mechanism suggests potential therapeutic interventions for apoA‐I amyloidosis.


Journal of Molecular Biology | 2009

Differential stability of high-density lipoprotein subclasses: effects of particle size and protein composition.

Xuan Gao; Shujun Yuan; Shobini Jayaraman; Olga Gursky

High-density lipoproteins (HDLs) are complexes of proteins (mainly apoA-I and apoA-II) and lipids that remove cholesterol and prevent atherosclerosis. Understanding the distinct properties of the heterogeneous HDL population may aid the development of new diagnostic tools and therapies for atherosclerosis. Mature human HDLs form two major subclasses differing in particle diameter and metabolic properties, HDL(2) (large) and HDL(3) (small). These subclasses are comprised of HDL(A-I) containing only apoA-I, and HDL(A-I/A-II) containing apoA-I and apoA-II. ApoA-I is strongly cardioprotective, but the function of the smaller, more hydrophobic apoA-II is unclear. ApoA-II is thought to counteract the cardioprotective action of apoA-I by stabilizing HDL particles and inhibiting their remodeling. To test this notion, we performed the first kinetic stability study of human HDL subclasses. The results revealed that the stability of plasma spherical HDL decreases with increasing particle diameter; which may facilitate preferential cholesterol ester uptake from large lipid-loaded HDL(2). Surprisingly, size-matched plasma HDL(A-I/A-II) showed comparable or slightly lower stability than HDL(A-I); this is consistent with the destabilization of model discoidal HDL observed upon increasing the A-II to A-I ratio. These results clarify the roles of the particle size and protein composition in HDL remodeling, and help reconcile conflicting reports regarding the role of apoA-II in this remodeling.


Biochemistry | 2008

Effects of protein oxidation on the structure and stability of model discoidal high-density lipoproteins

Shobini Jayaraman; Donald L. Gantz; Olga Gursky

High-density lipoproteins (HDLs) prevent atherosclerosis by removing cholesterol from macrophages and by providing antioxidants for low-density lipoproteins. Oxidation of HDLs affects their functions via the complex mechanisms that involve multiple protein and lipid modifications. To differentiate between the roles of oxidative modifications in HDL proteins and lipids, we analyzed the effects of selective protein oxidation by hypochlorite (HOCl) on the structure, stability, and remodeling of discoidal HDLs reconstituted from human apolipoproteins (A-I, A-II, or C-I) and phosphatidylcholines. Gel electrophoresis and electron microscopy revealed that, at ambient temperatures, protein oxidation in discoidal complexes promotes their remodeling into larger and smaller particles. Thermal denaturation monitored by far-UV circular dichroism and light scattering in melting and kinetic experiments shows that protein oxidation destabilizes discoidal lipoproteins and accelerates protein unfolding, dissociation, and lipoprotein fusion. This is likely due to the reduced affinity of the protein for lipid resulting from oxidation of Met and aromatic residues in the lipid-binding faces of amphipathic alpha-helices and to apolipoprotein cross-linking into dimers and trimers on the particle surface. We conclude that protein oxidation destabilizes HDL disk assembly and accelerates its remodeling and fusion. This result, which is not limited to model discoidal but also extends to plasma spherical HDL, helps explain the complex effects of oxidation on plasma lipoproteins.


Journal of Biological Chemistry | 2011

Impact of Self-association on Function of Apolipoprotein A-I

Shobini Jayaraman; Sumiko Abe-Dohmae; Shinji Yokoyama; Giorgio Cavigiolio

Background: Self-association is an intrinsic property of exchangeable apolipoproteins but an under-explored feature of the major protein of good cholesterol, apolipoprotein A-I. Result: Different degrees of apolipoprotein A-I self-association exhibit distinct in vitro lipid remodeling and cellular lipid release efficiencies. Conclusion: Self-association of apolipoprotein A-I modulates the biogenesis of high density lipoprotein. Significance: This is the first study to demonstrate that self-association of apolipoprotein A-I attunes key steps in reverse cholesterol transport. Self-association is an inherent property of the lipid-free forms of several exchangeable apolipoproteins, including apolipoprotein A-I (apoA-I), the main protein component of high density lipoproteins (HDL) and an established antiatherogenic factor. Monomeric lipid-free apoA-I is believed to be the biologically active species, but abnormal conditions, such as specific natural mutations or oxidation, produce an altered state of self-association that may contribute to apoA-I dysfunction. Replacement of the tryptophans of apoA-I with phenylalanines (ΔW-apoA-I) leads to unusually large and stable self-associated species. We took advantage of this unique solution property of ΔW-apoA-I to analyze the role of self-association in determining the structure and lipid-binding properties of apoA-I as well as ATP-binding cassette A1 (ABCA1)-mediated cellular lipid release, a relevant pathway in atherosclerosis. Monomeric ΔW-apoA-I and wild-type apoA-I activated ABCA1-mediated cellular lipid release with similar efficiencies, whereas the efficiency of high order self-associated species was reduced to less than 50%. Analysis of specific self-associated subclasses revealed that different factors influence the rate of HDL formation in vitro and ABCA1-mediated lipid release efficiency. The α-helix-forming ability of apoA-I is the main determinant of in vitro lipid solubilization rates, whereas loss of cellular lipid release efficiency is mainly caused by reduced structural flexibility by formation of stable quaternary interactions. Thus, stabilization of self-associated species impairs apoA-I biological activity through an ABCA1-mediated mechanism. These results afford mechanistic insights into the ABCA1 reaction and suggest self-association as a functional feature of apoA-I. Physiologic mechanisms may alter the native self-association state and contribute to apoA-I dysfunction.


Biochemical Journal | 2012

Folded functional lipid-poor apolipoprotein A-I obtained by heating of high-density lipoproteins: relevance to high-density lipoprotein biogenesis

Shobini Jayaraman; Giorgio Cavigiolio; Olga Gursky

HDL (high-density lipoproteins) remove cell cholesterol and protect from atherosclerosis. The major HDL protein is apoA-I (apolipoprotein A-I). Most plasma apoA-I circulates in lipoproteins, yet ~5% forms monomeric lipid-poor/free species. This metabolically active species is a primary cholesterol acceptor and is central to HDL biogenesis. Structural properties of lipid-poor apoA-I are unclear due to difficulties in isolating this transient species. We used thermal denaturation of human HDL to produce lipid-poor apoA-I. Analysis of the isolated lipid-poor fraction showed a protein/lipid weight ratio of 3:1, with apoA-I, PC (phosphatidylcholine) and CE (cholesterol ester) at approximate molar ratios of 1:8:1. Compared with lipid-free apoA-I, lipid-poor apoA-I showed slightly altered secondary structure and aromatic packing, reduced thermodynamic stability, lower self-associating propensity, increased adsorption to phospholipid surface and comparable ability to remodel phospholipids and form reconstituted HDL. Lipid-poor apoA-I can be formed by heating of either plasma or reconstituted HDL. We propose the first structural model of lipid-poor apoA-I which corroborates its distinct biophysical properties and postulates the lipid-induced ordering of the labile C-terminal region. In summary, HDL heating produces folded functional monomolecular lipid-poor apoA-I that is distinct from lipid-free apoA-I. Increased adsorption to phospholipid surface and reduced C-terminal disorder may help direct lipid-poor apoA-I towards HDL biogenesis.


Journal of Molecular Biology | 2008

Mild Oxidation Promotes and Advanced Oxidation Impairs Remodeling of Human High-Density Lipoprotein in vitro

Xuan Gao; Shobini Jayaraman; Olga Gursky

High-density lipoproteins (HDLs) prevent atherosclerosis by removing cholesterol from macrophages and by exerting antioxidant and anti-inflammatory effects. Oxidation is thought to impair HDL functions, yet certain oxidative modifications may be advantageous; thus, mild oxidation reportedly enhances cell cholesterol uptake by HDL whereas extensive oxidation impairs it. To elucidate the underlying energetic and structural basis, we analyzed the effects of copper and hypochlorite (which preferentially oxidize lipids and proteins, respectively) on thermal stability of plasma spherical HDL. Circular dichroism, light scattering, calorimetry, gel electrophoresis, and electron microscopy showed that mild oxidation destabilizes HDL and accelerates protein dissociation and lipoprotein fusion, while extensive oxidation inhibits these reactions; this inhibition correlates with massive protein cross-linking and with lipolysis. We propose that mild oxidation lowers kinetic barriers for HDL remodeling due to diminished apolipoprotein affinity for lipids resulting from oxidation of methionine and aromatic residues in apolipoproteins A-I and A-II followed by protein cross-linking into dimers and/or trimers. In contrast, advanced oxidation inhibits protein dissociation and HDL fusion due to lipid redistribution from core to surface upon lipolysis and to massive protein cross-linking. Our results help reconcile the apparent controversy in the studies of oxidized HDL and suggest that mild oxidation may benefit HDL functions.


Journal of Lipid Research | 2011

Effects of phospholipase A2 and its products on structural stability of human LDL: relevance to formation of LDL-derived lipid droplets

Shobini Jayaraman; Donald L. Gantz; Olga Gursky

Hydrolysis and oxidation of LDL stimulate LDL entrapment in the arterial wall and promote inflammation and atherosclerosis via various mechanisms including lipoprotein fusion and lipid droplet formation. To determine the effects of FFA on these transitions, we hydrolyzed LDL by phospholipase A2 (PLA2), removed FFA by albumin, and analyzed structural stability of the modified lipoproteins. Earlier, we showed that heating induces LDL remodeling, rupture, and coalescence into lipid droplets resembling those found in atherosclerotic lesions. Here, we report how FFA affect these transitions. Circular dichroism showed that mild LDL lipolysis induces partial β-sheet unfolding in apolipoprotein B. Electron microscopy, turbidity, and differential scanning calorimetry showed that mild lipolysis promotes LDL coalescence into lipid droplets. FFA removal by albumin restores LDL stability but not the protein conformation. Consequently, FFA enhance LDL coalescence into lipid droplets. Similar effects of FFA were observed in minimally oxidized LDL, in LDL enriched with exogenous FFA, and in HDL and VLDL. Our results imply that FFA promote lipoprotein coalescence into lipid droplets and explain why LDL oxidation enhances such coalescence in vivo but hampers it in vitro. Such lipid droplet formation potentially contributes to the pro-atherogenic effects of FFA.


Journal of Biological Chemistry | 2015

Myeloperoxidase-mediated Methionine Oxidation Promotes an Amyloidogenic Outcome for Apolipoprotein A-I.

Gary K. L. Chan; Andrzej Witkowski; Donald L. Gantz; Tianqi O. Zhang; Martin T. Zanni; Shobini Jayaraman; Giorgio Cavigiolio

Background: Amyloids made of apolipoprotein A-I (apoA-I) contribute to the growth of the atherosclerotic plaques. Results: ApoA-I methionine oxidation by physiological levels of myeloperoxidase induces amyloid formation. Conclusion: Myeloperoxidase-mediated oxidation not only impairs the physiological functions of apoA-I but also promotes protein loss in form of amyloids. Significance: Our findings identify the physiological mechanism transforming wild-type apoA-I into an amyloidogenic protein. High plasma levels of apolipoprotein A-I (apoA-I) correlate with cardiovascular health, whereas dysfunctional apoA-I is a cause of atherosclerosis. In the atherosclerotic plaques, amyloid deposition increases with aging. Notably, apoA-I is the main component of these amyloids. Recent studies identified high levels of oxidized lipid-free apoA-I in atherosclerotic plaques. Likely, myeloperoxidase (MPO) secreted by activated macrophages in atherosclerotic lesions is the promoter of such apoA-I oxidation. We hypothesized that apoA-I oxidation by MPO levels similar to those present in the artery walls in atherosclerosis can promote apoA-I structural changes and amyloid fibril formation. ApoA-I was exposed to exhaustive chemical (H2O2) oxidation or physiological levels of enzymatic (MPO) oxidation and incubated at 37 °C and pH 6.0 to induce fibril formation. Both chemically and enzymatically oxidized apoA-I produced fibrillar amyloids after a few hours of incubation. The amyloid fibrils were composed of full-length apoA-I with differential oxidation of the three methionines. Met to Leu apoA-I variants were used to establish the predominant role of oxidation of Met-86 and Met-148 in the fibril formation process. Importantly, a small amount of preformed apoA-I fibrils was able to seed amyloid formation in oxidized apoA-I at pH 7.0. In contrast to hereditary amyloidosis, wherein specific mutations of apoA-I cause protein destabilization and amyloid deposition, oxidative conditions similar to those promoted by local inflammation in atherosclerosis are sufficient to transform full-length wild-type apoA-I into an amyloidogenic protein. Thus, MPO-mediated oxidation may be implicated in the mechanism that leads to amyloid deposition in the atherosclerotic plaques in vivo.


Journal of Lipid Research | 2015

Thermal Transitions in Serum Amyloid A in Solution and on the Lipid: Implications for Structure and Stability of Acute-Phase HDL

Shobini Jayaraman; Christian Haupt; Olga Gursky

Serum amyloid A (SAA) is an acute-phase protein that circulates mainly on plasma HDL. SAA interactions with its functional ligands and its pathogenic deposition in reactive amyloidosis depend, in part, on the structural disorder of this protein and its propensity to oligomerize. In vivo, SAA can displace a substantial fraction of the major HDL protein, apoA-I, and thereby influence the structural remodeling and functions of acute-phase HDL in ways that are incompletely understood. We use murine SAA1.1 to report the first structural stability study of human plasma HDL that has been enriched with SAA. Calorimetric and spectroscopic analyses of these and other SAA-lipid systems reveal two surprising findings. First, progressive displacement of the exchangeable fraction of apoA-I by SAA has little effect on the structural stability of HDL and its fusion and release of core lipids. Consequently, the major determinant for HDL stability is the nonexchangeable apoA-I. A structural model explaining this observation is proposed, which is consistent with functional studies in acute-phase HDL. Second, we report an α-helix folding/unfolding transition in SAA in the presence of lipid at near-physiological temperatures. This new transition may have potentially important implications for normal functions of SAA and its pathogenic misfolding.

Collaboration


Dive into the Shobini Jayaraman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giorgio Cavigiolio

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrzej Witkowski

Children's Hospital Oakland Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge