Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shogo Sakai is active.

Publication


Featured researches published by Shogo Sakai.


Brain Research Bulletin | 2015

Changes in the frequency of swallowing during electrical stimulation of superior laryngeal nerve in rats.

Kojun Tsuji; Takanori Tsujimura; Jin Magara; Shogo Sakai; Yuki Nakamura; Makoto Inoue

The aim of the present study was to investigate the adaptation of the swallowing reflex in terms of reduced swallowing reflex initiation following continuous superior laryngeal nerve stimulation. Forty-four male Sprague Dawley rats were anesthetized with urethane. To identify swallowing, electromyographic activity of the left mylohyoid and thyrohyoid muscles was recorded. To evoke the swallowing response, the superior laryngeal nerve (SLN), recurrent laryngeal nerve, or cortical swallowing area was electrically stimulated. Repetitive swallowing evoked by continuous SLN stimulation was gradually reduced, and this reduction was dependent on the resting time duration between stimulations. Prior SLN stimulation also suppressed subsequent swallowing initiation. The reduction in evoked swallows induced by recurrent laryngeal nerve or cortical swallowing area stimulation was less than that following superior laryngeal nerve stimulation. Decerebration had no effect on the reduction in evoked swallows. Prior subthreshold stimulation reduced subsequent initiation of swallowing, suggesting that there was no relationship between swallowing movement evoked by prior stimulation and the subsequent reduction in swallowing initiation. Overall, these data suggest that reduced sensory afferent nerve firing and/or trans-synaptic responses, as well as part of the brainstem central pattern generator, are involved in adaptation of the swallowing reflex following continuous stimulation of swallow-inducing peripheral nerves and cortical areas.


Brain Research Bulletin | 2016

Differential response properties of peripherally and cortically evoked swallows by electrical stimulation in anesthetized rats

Takanori Tsujimura; Kojun Tsuji; Jin Magara; Shogo Sakai; Taku Suzuki; Yuki Nakamura; Kayoko Nozawa-Inoue; Makoto Inoue

We compared onset latency, motor-response patterns, and the effect of electrical stimulation of the cortical masticatory area between peripherally and cortically evoked swallows by electrical stimulation in anesthetized rats. The number of swallows and the motor patterns were determined using electromyographic recordings from the thyrohyoid, digastric, and masseter muscles. The onset latency of the first swallow evoked by electrical stimulation of the cortical swallowing area (Cx) was significantly longer than that evoked by stimulation of the superior laryngeal nerve (SLN). The duration of thyrohyoid burst activity associated with SLN-evoked swallows was significantly longer than that associated with either Cx-evoked or spontaneous swallows. Combining Cx with SLN stimulation increased the number of swallows at low levels of SLN stimulation. Finally, A-area (the orofacial motor cortex) stimulation inhibited Cx-evoked swallows significantly more than it inhibited SLN-evoked swallows. These findings suggest that peripherally and cortically evoked swallows have different response properties and are affected differently by the mastication network.


Neuroscience Letters | 2013

Effects of chewing and swallowing behavior on jaw opening reflex responses in freely feeding rabbits.

Aki Yamada; Yuka Kajii; Shogo Sakai; Takanori Tsujimura; Yuki Nakamura; Sajjiv Ariyasinghe; Jin Magara; Makoto Inoue

It has been reported that the jaw opening reflex (JOR) evoked by intra-oral innocuous stimulation was suppressed during a reflex swallow in anesthetized animals only. However, the mechanism of JOR inhibition during swallowing has not yet been elucidated. The aim of the present study was to investigate the effects of peripheral nerve stimulation on masticatory behaviors, as well as the modulation of low threshold afferent evoked JOR responses during chewing and swallowing in freely feeding animals. The JOR in the digastric muscle was evoked by low threshold electrical stimulation of the inferior alveolar nerve (IAN). Changes in the peak-to-peak amplitude of digastric electromyographic responses were compared among the phases of chewing and swallowing. IAN stimulation did not produce any differences in cycle duration, gape of the jaw in one cycle, or swallowing interval, suggesting a minimal effect on feeding behaviors. The JOR amplitude during the fast-closing, slow-closing, and slow-opening phases of chewing was significantly smaller than that of the control (recorded when the animal was at rest) and fast-opening phase. During swallowing, the JOR amplitude was significantly less than the control. Inhibition of the JOR during swallowing is assumed to prevent unnecessary opposing jaw opening motion.


Physiology & Behavior | 2016

Effect of body posture on involuntary swallow in healthy volunteers

Yoshitaka Shiino; Shogo Sakai; Ryosuke Takeishi; Hirokazu Hayashi; Masahiro Watanabe; Takanori Tsujimura; Jin Magara; Kayoko Ito; Tetsu Tsukada; Makoto Inoue

Clinically, reclining posture has been reported to reduce risk of aspiration. However, during involuntary swallow in reclining posture, changes in orofacial and pharyngeal movement before and during pharyngeal swallow should be considered. Further, the mechanisms underlying the effect of body posture on involuntary swallow remain unclear. The aim of the present study was to determine the effect of body posture on activity patterns of the suprahyoid muscles and on patterns of bolus transport during a natural involuntary swallow. Thirteen healthy male adults participated in a water infusion test and a chewing test. In the water infusion test, thickened water was delivered into the pharynx at a very slow rate until the first involuntary swallow was evoked. In the chewing test, subjects were asked to eat 10 g of gruel rice. In both tests, the recording was performed at four body postures between upright and supine positions. Results showed that reclining changed the location of the bolus head at the start of swallow and prolonged onset latency of the swallowing initiation. Muscle burst duration and whiteout time measured by videoendoscopy significantly increased with body reclining and prolongation of the falling time. In the chewing test, reclining changed the location of the bolus head at the start of swallow, and the frequency of bolus residue after the first swallow increased. Duration and area of EMG burst and whiteout time significantly increased with body reclining. These data suggest that body reclining may result in prolongation of pharyngeal swallow during involuntary swallow.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2017

Central inhibition of initiation of swallowing by systemic administration of diazepam and baclofen in anaesthetized rats

Takanori Tsujimura; Shogo Sakai; Taku Suzuki; Izumi Ujihara; Kojun Tsuji; Jin Magara; Brendan J. Canning; Makoto Inoue

Dysphagia is caused not only by neurological and/or structural damage but also by medication. We hypothesized memantine, dextromethorphan, diazepam, and baclofen, all commonly used drugs with central sites of action, may regulate swallowing function. Swallows were evoked by upper airway (UA)/pharyngeal distension, punctate mechanical stimulation using a von Frey filament, capsaicin or distilled water (DW) applied topically to the vocal folds, and electrical stimulation of a superior laryngeal nerve (SLN) in anesthetized rats and were documented by recording electromyographic activation of the suprahyoid and thyrohyoid muscles and by visualizing laryngeal elevation. The effects of intraperitoneal or topical administration of each drug on swallowing function were studied. Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABAA receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABAB receptor antagonist diminished the effects of baclofen. Topically applied diazepam or baclofen had no effect on swallowing. These data indicate that diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats.NEW & NOTEWORTHY Systemic administration of diazepam and baclofen, but not memantine or dextromethorphan, inhibited swallowing evoked by mechanical, chemical, and electrical stimulation. Both benzodiazepines and GABAA receptor antagonists diminished the inhibitory effects of diazepam, whereas a GABAB receptor antagonist diminished the effects of baclofen. Topical applied diazepam or baclofen was without effect on swallowing. Diazepam and baclofen act centrally to inhibit swallowing in anesthetized rats.


Journal of Applied Physiology | 2018

Involvement of hypoglossal and recurrent laryngeal nerves on swallowing pressure

Takanori Tsujimura; Taku Suzuki; Midori Yoshihara; Shogo Sakai; Naomi Koshi; Hirokazu Ashiga; Naru Shiraishi; Kojun Tsuji; Jin Magara; Makoto Inoue

Swallowing pressure generation is important to ensure safe transport of an ingested bolus without aspiration or leaving residue in the pharynx. To clarify the mechanism, we measured swallowing pressure at the oropharynx (OP), upper esophageal sphincter (UES), and cervical esophagus (CE) using a specially designed manometric catheter in anesthetized rats. A swallow, evoked by punctate mechanical stimulation to the larynx, was identified by recording activation of the suprahyoid and thyrohyoid muscles using electromyography (EMG). Areas under the curve of the swallowing pressure at the OP, UES, and CE from two trials indicated high intrasubject reproducibility. Effects of transecting the hypoglossal nerve (12N) and recurrent laryngeal nerve (RLN) on swallowing were investigated. Following bilateral hypoglossal nerve transection (Bi-12Nx), OP pressure was significantly decreased, and time intervals between peaks of thyrohyoid EMG bursts and OP pressure were significantly shorter. Decreased OP pressure and shortened times between peaks of thyrohyoid EMG bursts and OP pressure following Bi-12Nx were significantly increased and longer, respectively, after covering the hard and soft palates with acrylic material. UES pressure was significantly decreased after bilateral RLN transection compared with that before transection. These results suggest that the 12N and RLN play crucial roles in OP and UES pressure during swallowing, respectively. We speculate that covering the palates with a palatal augmentation prosthesis may reverse the reduced swallowing pressure in patients with 12N or tongue damage by the changes of the sensory information and of the contact between the tongue and a palates. NEW & NOTEWORTHY Hypoglossal nerve transection reduced swallowing pressure at the oropharynx. Covering the hard and soft palates with acrylic material may reverse the reduced swallowing function caused by hypoglossal nerve damage. Recurrent laryngeal nerve transection reduced upper esophageal sphincter negative pressure during swallowing.


Brain Research | 2018

Effect of peripherally and cortically evoked swallows on jaw reflex responses in anesthetized rabbits

Taku Suzuki; Midori Yoshihara; Shogo Sakai; Kojun Tsuji; Kouta Nagoya; Jin Magara; Takanori Tsujimura; Makoto Inoue

This study aimed to investigate whether the jaw-opening (JOR) and jaw-closing reflexes (JCR) are modulated during not only peripherally, but also centrally, evoked swallowing. Experiments were carried out on 24 adult male Japanese white rabbits. JORs were evoked by trigeminal stimulation at 1 Hz for 30 s. In the middle 10 s, either the superior laryngeal nerve (SLN) or cortical swallowing area (Cx) was simultaneously stimulated to evoke swallowing. The peak-to-peak JOR amplitude was reduced during the middle and late 10-s periods (i.e., during and after SLN or Cx stimulation), and the reduction was dependent on the current intensity of SLN/Cx stimulation: greater SLN/Cx stimulus current resulted in greater JOR inhibition. The reduction rate was significantly greater during Cx stimulation than during SLN stimulation. The amplitude returned to baseline 2 min after 10-s SLN/Cx stimulation. The effect of co-stimulation of SLN and Cx was significantly greater than that of SLN stimulation alone. There were no significant differences in any parameters of the JCR between conditions. These results clearly showed that JOR responses were significantly suppressed, not only during peripherally evoked swallowing but also during centrally evoked swallowing, and that the inhibitory effect is likely to be larger during centrally compared with peripherally evoked swallowing. The functional implications of these results are discussed.


The Journal of Japanese Society of Stomatognathic Function | 2017

Electromyographic analysis of hyoid muscles during tongue pressure measurement

N Koshi; Jin Magara; Shogo Sakai; Taku Suzuki; Takanori Tsujimura; Makoto Inoue


The Journal of Japanese Society of Stomatognathic Function | 2017

Modulation of jaw reflex responses during swallowing

Taku Suzuki; Shogo Sakai; Kojun Tsuji; Jin Magara; Takanori Tsujimura; Makoto Inoue


The Journal of Japanese Society of Stomatognathic Function | 2015

Modulation of Oral Sensation during Electrical Stimulation of the Superior Laryngeal Nerve

Shogo Sakai; Kojun Tsuji; Jin Magara; Takanori Tsujimura; Makoto Inoue

Collaboration


Dive into the Shogo Sakai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhiro Hori

Matsumoto Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoshitaka Shiino

Takeda Pharmaceutical Company

View shared research outputs
Researchain Logo
Decentralizing Knowledge