Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shohachi Kakuno is active.

Publication


Featured researches published by Shohachi Kakuno.


15th International Conference on Coastal Engineering | 1977

Slit-type Breakwater; Box-type Wave Absorber

Shoshichiro Nagai; Shohachi Kakuno

A significant portion of the damage by hurricanes is the storm surges. The National Weather Service has developed a dynamical-numerical model to forecast hurricane storm surges. The model is used operationally for prediction, warning, and planning purposes. The model requires fixed oceanographic and real time meteorological input data. The oceanographic data were prepared for the Gulf and East coasts of the U.S. and are stored as an essential part of the program. Meteorological data for any tropical storm are supplied by the forecasters or planners using the model. The model was applied to hurricane Camille 1969. Comparison between the observed and computed surges for Camille was satisfactory for prediction purposes.The main consideration in harbor master planning is to maximize the amount of time that the harbor can be used. The potential level of harbor utilization can be evaluated by analyzing vessel performance during harbor operations in terms of the range of imposed environmental conditions. The harbor utilization level is expressed statistically as the probable amount of time that the harbor can be used as planned.The design and construction of a major ocean outfall and diffuser system for disposal of wastewater effluents is a complex process involving an interplay of requirements originating from various disciplines. These include, among others, considerations of physical oceanography, mixing and dispersion, treatment processes, regulatory requirements, marine geology, economics and construction. The recently completed Sand Island Outfall and the newly designed Barbers Point Outfall are both on the southern coast of the island of Oahu, Hawaii, and are designed for treated sewage effluents from the densely populated portion of the City and County of Honolulu. In this paper, some design considerations of these outfalls will be examined. The emphasis in this paper is on the hydrodynamics, although other design aspects are also discussed briefly.The height of dikes and other coastal structures can only be calculated after determination of the wave run-up. Several formulas for the calculation of wave run-up are developed after model tests as a rule. But the influences of scale effects and natural wind conditions are practically unknown. To clear these questions further investigations and especially field measurements should be carried out. By measuring the markerline of floating trash on the slope of the seadikes the maximum wave run-up could be found out after four storm surges in 1967 and 1973In two graphs it will be shown that on the tidal flats the run-up depends on the waterdepth. The run-up was higher than it could be expected after model tests of 1954. With a newly developed special echo sounder the run-up could be measured in January 1976. The waves and the run-up could be registrated synchronously during two severe storm surges. As shown in Fig. 9 it was found a logarithmic distribution of the wave height, wave period and the higher part of the wave run-up. The found wave run-up is considerably higher than estimated before. The measured 98 % run-up is found about twice the computed value. That is an interesting and important result of the first synchronous recording of wave run-up on sea dikes.In March 1972 the authors firm in association with two Portuguese firms of consulting engineers, Consulmar and Lusotecna, were appointed by the Portuguese Government agency Gabinete da Area de Sines to prepare designs for the construction of a new harbour at Sines on the west coast of Portugal. The location is shown in Figure 1. The main breakwater, which is the subject of this paper, is probably the largest breakwater yet built, being 2 km long and in depths of water of up to 50 m. It is exposed to the North Atlantic and has been designed for a significant wave height of 11 m. Dolos units invented by Merrifield (ref. 1) form the main armour. The project programme required that studies be first made of a wide range of alternative layouts for the harbour. After the client had decided on the layout to be adopted, documents were to be prepared to enable tenders for construction to be invited in January 1973. This allowed little time for the design to be developed and only one series of flume tests, using regular waves, was completed during this period. Further tests in the regular flume were completed during the tender period and a thorough programme of testing with irregular waves was commenced later in the year, continuing until August 1974 when the root of the breakwater was complete and the construction of the main cross-section was about to start. The model tests, which were carried out at the Laboratorio Nacional de Engenharia Civil in Lisbon, were reported by Morals in a paper presented to the 14th International Coastal Engineering Conference in 1974. (ref. 2)Estuaries may be sequentially classified into highly stratified, moderately mixed and vertically homogeneous. An important difference between moderately stratified or vertically homogeneous estuaries, and highly stratified estuaries (salt wedges) is that, in the former, tidal currents are sufficient to cause turbulent mixing of fresh water and sea water over the full depth of the estuary. In the latter, a distinct interface or interfacial layer exists which separates the two nearly homogeneous layers. The vertical advectlon of salt in this two-layer flow is the dominant process in maintaining the salt balance. This paper presents an analytical model describing this process. Experiments have been conducted in the laboratory to compare with the developed theory.


Applied Ocean Research | 1998

Scattering of water waves by rows of cylinders with/without a backwall

Shohachi Kakuno; Yoshihiro Nakata

The scattering of small amplitude water waves impinging on several rows of vertical cylinders of arbitrary cross section with or without a backwall is studied theoretically and experimentally. First, a method of matched asymptotic expansions is developed without considering real fluid effects. The energy loss caused by flow separation near cylinders is modeled by introducing a complex blockage coefficient. The present theory with the empirical coefficients determined for an array of cylinders agrees well with experimental results obtained using different scales of models with or without a backwall.


16th International Conference on Coastal Engineering | 1978

WAVE PRESSURES ON SLIT-TYPE BREAKWATERS

Shoshichiro Nagai; Shohachi Kakuno

The equations describing conservation of mass, momentum and energy in a turbulent free surface flow are derived for a controle volume extending over the whole depth. The effect of the turbulent surface oscillations are discussed but neglected in the following analysis, where the equations are applied to the energy balance in a surf zone wave motion. This leads to results for the wave height variation and the velocity of propagation. The results cannot be reconciled completely with measurements and the concluding discussion is aimed at revealing how the model can be improved.A three-dimensional morphodynamic model of sequential beach changes Is presented. The model Is based on variations in breaker wave power generating a predictable sequence of beach conditions. The spectrum of beach conditions from fully eroded-dissipatlve to fully accreted reflective is characterised by ten beach-stages. Using the breaker wave power to beach-stage relationship the model Is applied to explain temporal, spatial and global variations In beach morphodynamlcs.The agents of initial damage to the dunes are water, which undermines them, and animals (including man) which damage the protective vegetation by grazing or trampling. Of these, man has recently assumed predominant local importance because of the popularity of sea-side holidays and of the land-falls of certain marine engineering works such as oil and gas pipelines and sewage outfalls. The need is therefore increasing for active dune management programmes to ensure that under these accentuated pressures, the coast retain an equilibrium comparable with that delicately balanced equilibrium which obtains naturally at a particular location.


Coastal Engineering | 1999

DEVELOPMENT OF A NEW TYPE OF REEF BREAKWATER THEORETICAL AND EXPERIMENTAL STUDY

Shohachi Kakuno; Masao Endoh; Yiming Zhong; Takaaki Shigematsu; Kazuki Oda

Detailed studies have been undertaken to assist in the design of major extensions to the port of Haifa. Both numerical and physical model studies were done to optimise the mooring conditions vis a vis the harbour approach and entrance layout. The adopted layout deviates from the normal straight approach to the harbour entrance. This layout, together with suitable aids to navigation, was found to be nautically acceptable, and generally better with regard to mooring conditions, on the basis of extensive nautical design studies.Hwa-Lian Harbour is located at the north-eastern coast of Taiwan, where is relatively exposed to the threat of typhoon waves from the Pacific Ocean. In the summer season, harbour resonance caused by typhoon waves which generated at the eastern ocean of the Philippine. In order to obtain a better understanding of the existing problem and find out a feasible solution to improve harbour instability. Typhoon waves measurement, wave characteristics analysis, down-time evaluation for harbour operation, hydraulic model tests are carried out in this program. Under the action of typhoon waves, the wave spectra show that inside the harbors short period energy component has been damped by breakwater, but the long period energy increased by resonance hundred times. The hydraulic model test can reproduce the prototype phenomena successfully. The result of model tests indicate that by constructing a jetty at the harbour entrance or building a short groin at the corner of terminal #25, the long period wave height amplification agitated by typhoon waves can be eliminated about 50%. The width of harbour basin 800m is about one half of wave length in the basin for period 140sec which occurs the maximum wave amplification.Two-stage methodology of shoreline prediction for long coastal segments is presented in the study. About 30-km stretch of seaward coast of the Hel Peninsula was selected for the analysis. In 1st stage the shoreline evolution was assessed ignoring local effects of man-made structures. Those calculations allowed the identification of potentially eroding spots and the explanation of causes of erosion. In 2nd stage a 2-km eroding sub-segment of the Peninsula in the vicinity of existing harbour was thoroughly examined including local man-induced effects. The computations properly reproduced the shoreline evolution along this sub-segment over a long period between 1934 and 1997.In connection with the dredging and reclamation works at the Oresund Link Project between Denmark and Sweden carried out by the Contractor, Oresund Marine Joint Venture (OMJV), an intensive spill monitoring campaign has been performed in order to fulfil the environmental requirements set by the Danish and Swedish Authorities. Spill in this context is defined as the overall amount of suspended sediment originating from dredging and reclamation activities leaving the working zone. The maximum spill limit is set to 5% of the dredged material, which has to be monitored, analysed and calculated within 25% accuracy. Velocity data are measured by means of a broad band ADCP and turbidity data by four OBS probes (output in FTU). The FTUs are converted into sediment content in mg/1 by water samples. The analyses carried out, results in high acceptance levels for the conversion to be implemented as a linear relation which can be forced through the origin. Furthermore analyses verifies that the applied setup with a 4-point turbidity profile is a reasonable approximation to the true turbidity profile. Finally the maximum turbidity is on average located at a distance 30-40% from the seabed.


25th International Conference on Coastal Engineering | 1997

REFLECTION COEFFICIENTS OF THE STEP-SHAPED SLIT CAISSON ON THE RUBBLE MOUND

Sung Mo. Ahn; Ryuichi Fujiwara; Hiroshi Matsunaga; Katsuhiko Kurata; Shohachi Kakuno

A study of alternatives including a shoreline evolution numerical modelization has been carried out in order to both diagnose the erosion problem at the beaches located between Cambrils Harbour and Pixerota delta (Tarragona, Spain) and select nourishment alternatives.


PROCEEDINGS OF CIVIL ENGINEERING IN THE OCEAN | 1996

Study on the application of a Step-Shaped Slit Caisson for practical use

Sung Mo. Ahn; Ryuichi Fujiwara; Katsuhiko Kurata; Shohachi Kakuno

A new type of breakwater with a step-shaped slit caisson has been developed and some very fascinating results have been found.It was found that this breakwater has low reflection in a wider range of wave fre quency compared to conventional slit-type breakwaters.A numerical analysis which combines the method of matched asymptotic expansions with a boundary element method has been applied for calculation of the reflection coefficients for these structures.However the previous studies were on the condition of non rubble mound.The present paper focuses on the reflection coefficients of the step-shaped slit caisson on the rubble mound in order to apply the step-shaped slit caisson for practical use.


17th International Conference on Coastal Engineering | 1980

SEAWALLS IN DEEP SEAS

Shoshichiro Nagai; Shohachi Kakuno

Parameter Identification (PI) algorithm is an optimization procedure that systematically searches the parameters embedded in a mathematical model. These parameters are not measurable from a physical point of view. The optimization is based on the minimization of a selected norm of the differences between the solution of the mathematical model and scattered observations collected from the system. Parameter identification (or inverse problem) has been studied in groundwater systems extensively for the past decade (15), and it has also drawn many researchers in the fields of open-channel flow and estuarine modeling since 1972 (1,2,9,17). All the past estuarine PI works in the literature are confined to the one-dimensional case, and hydrodynamics and transport equations are treated separately. This study deals with PI in a two-dimensional vertically-averaged estuarine salinity model. The salinity transport equation is coupled with the hydrodynamics equations. The coupled relationship introduces extra density terms in the hydrodynamics equations, which must be solved simultaneously with the transport equation. One of the most difficult problems in PI is the collection of needed observations from the system which is being modeled. With limited exception, the currently available data from the prototype estuaries are not adequate for the purposes of developing a PI algorithm. This is usually critical in quantity (the number of stations and/or the period of time) and in quality (noise of data). However, if an operational hydraulic model is available, the data could then be obtained economically and accurately under an ideally controlled environment. The large amount of data that can be collected from a hydraulic model of an estuary will provide a sufficient number of observations and the required initial and boundary conditions for the development of a PI algorithm. The use of the estuary hydraulic model could provide a better source of prototype data than would be available from the real estuary. It will be much easier to distinguish between the inadequacy of the mathematics and the inadequacy of our understanding of the prototype. Thus, it will give us an idea of how well we could expect to mathematically model the real estuary if we had an unlimited amount of prototype data. Additionally, when these types of data are used in PI, parameters can be optimally identified and the mathematical model can then be used conjunctively with the hydraulic model for prototype applications, provided that the mathematical model is consistently formulated. How well a hydraulic model simulates the prototype estuary is not considered in this study.The problem of buoyant surface jet (BSJ) is relevant from the practical standpoint to the discharge of cooling water of power plants into the receiving water bodies. The buoyant surface jet has extensively been studied by numerous investigators both theoretically and experimentally. Most studies have been concerned with the problems of BSJ discharged horizontally into a surface of a deep ambient water with or without cross current. From a practical standpoint, however, the design engineers are often confronted with the design of thermal outfalls in the coastal regions which are frequently shallow and have the boundary effects. Few investigators have studied the problem of BSJ discharged horizontally over slopping bottom into quiescent receiving water (1), (2), (4), (5), (6), and (7). However, no information on the foregoing problem with moving ambient water is available. The purpose of this paper is (a) to present the experimental results of BSJ which is discharged over slopping bottom into moving ambient water, and (b) to see the degree of error which is introduced by applying the deep water integral models to the case of a buoyant surface jet with a bottom boundary.This study deals with the statistical properties of the group formation of random waves determined by the zero-up-cross method. Probability distributions about (1) the run of high waves (2) the total run (3) the run of resonant wave period are derived theoretically providing that the time series of wave height and wave period form the Markov chain. Transition probabilities are given by the 2-dimensional Rayleigh distribution for the wave height train and the 2-dimensional Weibull distribution for the wave period train. And very good agreements between data and the theoretical distributions have been obtained. Then the paper discusses those parameters which affect the statistical properties of the runs and shows that the spectrum peakedness parameter for the. run of wave height and the spectrum width parameter for the run of wave period are the most predominant.One of the characteristics of the North Sea between the British Isles, the Netherlands, Germany and Denmark is the occurrence of heave storm surges especially in autumn and winter with heights of about 4 m above spring highwater. Coastal areas and especially the estuaries of the tidal rivers are hit by these storm surge events. The mean tidal range at the German coast comes to about 3 m with relatively low daily and semimonthly inequalities of less than 0.5m. Within the framework of long-term developments of the navigation channels of the estuaries as well as of the storm surge protection works, physical model tests had to be carried out in order to predict the influences of such measures on the storm surge heights to be expected.A two-dimensional laboratory investigation of sediment transport, induced by shallow-water waves, showed that the sediment motion over suspension-dominant asymmetric ripples is closely related to the development of eroding beaches. High-speed motion picture analysis revealed that vortices, formed over this type of ripple, play a crucial role in transporting the sediment to the offshore region. A relation for net offshore sediment flux was formulated for sand 0.02 cm in diameter. A simple model for eroding beaches was proposed and its validity was checked by using two existing data sets for 0.02-cm sand beaches; the model could predict fairly well profile and shoreline changes in the early stages.Queenslands Beach Protection Act (1968-1974) resulted, inter alia in the formation of the Beach Protection Authority, which is responsible for investigating coastal erosion, planning remedial works, recording and evaluating results of investigations, and various other functions. Control of windblown sand and retention of vegetated and naturally stable coastal sand dunes are valuable means of decreasing coastal erosion and because of this the Authority implements a broad research program into the management of coastal dunes in Queensland. Field trials are carried out at the Authoritys Dune Management Research Station on South Stradbroke Island to determine methods of repairing, stabilizing and managing coastal dunes. The research program conducted so far consists of fifteen separate field trials within four general areas of investigation:- (a) Dune Forming Fences Two trials were installed in blown-out sections of the frontal dune to compare different types of semi-permeable fences (eg. wooden slats) and brush matting (a surface mulch of tree branches) on the basis of their ability to accumulate windblown sand and initiate dune formation. (b) Dune Stabilization Techniques Three trials were installed on bare dunal areas to evaluate methods of temporary sand surface stabilization (organic mulches and spray-on materials) as an aid in establishing dune vegetation. (c) Dune Vegetation Two trials were conducted to produce and compile information on the performance of important or potentially useful dune plants. (d) Plant Nutrition Eight trials using different combinations and rates of fertilizer were used to study methods of improvement of establishment and early growth of dune stabilizing plants, particularly sand spinifex grass (Spinifex hirsutus). Good establishment and rapid early growth is required in order to accelerate, improve, and decrease the costs of, the stabilization process.Construction of the Jebel Ali Port complex, 35 km southwest of Dubai, in the United Arab Emirates, has included the disposal of 110 Million cubic metres of excavated spoil. Disposal of dredged carbonaceous breccia raised particular problems due to the high proportion of fines generated and which, unless properly controlled, could cause wide scale environmental damage in the coastal zone. At the same time it was necessary that acceptable reclamation should be created. An extensive data collection exercise was carried out in order to monitor the geotechnical, hydraulic, meteorological, marine climate and marine biology aspects of the operation.Tung-Kang Fishing Harbor, which is about 16 km to the south of Kaohsiung Harbor, is a river harbor on the south-west coast of Taiwan. This harbor is located at the estuary of the Niu-Pu River, which meets the Tung- Kang River and the Kao-Ping River on the north side, (see Fig. 1) The original north and south jetties were constructed in 1959. Because the entrance is located at the meeting of the three rivers and the water depth at the entrance is shallower than that in the breaking zone, the entrance is easily chocked with sand during the summer season when the south-west wind and waves are strong. Therefore, dredging is always necessary to maintain the required depth. On. the other hand, because of the increasing number of fishing boats and deeper draft, the port cannot function effectively. There-fore, how to keep the required water depth at the entrance and to obtain a wider and stable water basin is an urgent problem with this harbor. Based on the sounding of 1973, the littoral drift is mainly from the south. In the next year the construction of a 176 m long new south jetty was begun to protect the entrance and to facilitate the sedimentation study. In 1975, the Taiwan Fisheries Consultants was appointed to undertake the investigation and long-term planning work. This project includes littoral process study, planning, model test and design. Finally it is recommended that an adequate layout of south and north jetties can solve the problem of accretation of the harbor entrance. The purpose of this paper is to describe some aspects with emphasis on how to prevent the shoaling of the entrance channel located at the meeting of the rivers.


Journal of Engineering Mechanics-asce | 2007

Noise of Acoustic Doppler Velocimeter Data in Bubbly Flows

Nobuhito Mori; Takuma Suzuki; Shohachi Kakuno


Journal of Waterway Port Coastal and Ocean Engineering-asce | 1993

SCATTERING OF WATER WAVES BY VERTICAL CYLINDERS

Shohachi Kakuno; Philip L.-F. Liu


Journal of Geophysical Research | 2007

Experimental study of air bubbles and turbulence characteristics in the surf zone

Nobuhito Mori; Takuma Suzuki; Shohachi Kakuno

Collaboration


Dive into the Shohachi Kakuno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Fujita

Hitachi Zosen Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge