Shoko Takehara
Tottori University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shoko Takehara.
Molecular Therapy | 2010
Yasuhiro Kazuki; Masaharu Hiratsuka; Masato Takiguchi; Mitsuhiko Osaki; Naoyo Kajitani; Hidetoshi Hoshiya; Kei Hiramatsu; Toko Yoshino; Kanako Kazuki; Chie Ishihara; Shoko Takehara; Katsumi Higaki; Masato Nakagawa; Kazutoshi Takahashi; Shinya Yamanaka; Mitsuo Oshimura
Human artificial chromosome (HAC) has several advantages as a gene therapy vector, including stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including the regulatory elements. Induced pluripotent stem (iPS) cells have great potential for gene therapy, as such cells can be generated from the individuals own tissues, and when reintroduced can contribute to the specialized function of any tissue. As a proof of concept, we show herein the complete correction of a genetic deficiency in iPS cells derived from Duchenne muscular dystrophy (DMD) model (mdx) mice and a human DMD patient using a HAC with a complete genomic dystrophin sequence (DYS-HAC). Deletion or mutation of dystrophin in iPS cells was corrected by transferring the DYS-HAC via microcell-mediated chromosome transfer (MMCT). DMD patient- and mdx-specific iPS cells with the DYS-HAC gave rise to differentiation of three germ layers in the teratoma, and human dystrophin expression was detected in muscle-like tissues. Furthermore, chimeric mice from mdx-iPS (DYS-HAC) cells were produced and DYS-HAC was detected in all tissues examined, with tissue-specific expression of dystrophin. Therefore, the combination of patient-specific iPS cells and HAC-containing defective genes represents a powerful tool for gene and cell therapies.
Gene Therapy | 2011
Yasuhiro Kazuki; Hidetoshi Hoshiya; Masato Takiguchi; Satoshi Abe; Yuichi Iida; Mitsuru Osaki; Motonobu Katoh; Masaharu Hiratsuka; Y Shirayoshi; Kei Hiramatsu; E Ueno; Naoyo Kajitani; Toko Yoshino; Kanako Kazuki; Chie Ishihara; Shoko Takehara; Shoji Tsuji; F Ejima; Atsushi Toyoda; Yoshiyuki Sakaki; V Larionov; N Kouprina; Mitsuo Oshimura
Human artificial chromosomes (HACs) have several advantages as gene therapy vectors, including stable episomal maintenance, and the ability to carry large gene inserts. We previously developed HAC vectors from the normal human chromosomes using a chromosome engineering technique. However, endogenous genes were remained in these HACs, limiting their therapeutic applications. In this study, we refined a HAC vector without endogenous genes from human chromosome 21 in homologous recombination-proficient chicken DT40 cells. The HAC was physically characterized using a transformation-associated recombination (TAR) cloning strategy followed by sequencing of TAR-bacterial artificial chromosome clones. No endogenous genes were remained in the HAC. We demonstrated that any desired gene can be cloned into the HAC using the Cre-loxP system in Chinese hamster ovary cells, or a homologous recombination system in DT40 cells. The HAC can be efficiently transferred to other type of cells including mouse ES cells via microcell-mediated chromosome transfer. The transferred HAC was stably maintained in vitro and in vivo. Furthermore, tumor cells containing a HAC carrying the suicide gene, herpes simplex virus thymidine kinase (HSV-TK), were selectively killed by ganciclovir in vitro and in vivo. Thus, this novel HAC vector may be useful not only for gene and cell therapy, but also for animal transgenesis.
Chromosome Research | 2000
Tokuyuki Shinohara; Kazuma Tomizuka; Shoko Takehara; Kaori Yamauchi; Motonobu Katoh; Atsuko Ohguma; Isao Ishida; Mitsuo Oshimura
Chromosome fragments represent feasible gene delivery vectors with the use of microcell-mediated chromosome transfer. To test a prerequisite for a gene delivery vector, we examined the stability of human chromosome fragments (hCFs) in cultured cells and in trans-chromosomic (Tc) mice. Fragments of human chromosomes 2 (hCF(2-W23)), 11 (hCF-11) and 14 (hCF(SC20)) tagged with neo were introduced into the TT2F mouse ES cells, and retention of the hCFs was examined by FISH during long-term culture without selection. In contrast to the gradual loss of hCF(2-W23) and hCF-11, hCF(SC20) remained stable over 70 population doublings in the ES cells. The hCF(SC20) was also stable in cultured human tumor cells and chicken DT40 cells. We have previously generated chimeric mice using the ES cells harboring the hCF(2-W23) or hCF(SC20), followed by production of Tc mice. Although both the hCF(2-W23) and hCF(SC20) persisted in cells of Tc mice as an additional chromosome and were transmitted to offspring, the hCF(SC20) was more stable than the hCF(2-W23) in F1 and F2 mice. The present study shows that the stability of hCFs in Tc mice differs with tissue types and with genetic background used for successive breedings. Thus, the hCF(SC20), which was relatively stable in both mouse and human cells, may be a promising candidate for development as a gene delivery vector.
ACS Synthetic Biology | 2014
Masato Takiguchi; Yasuhiro Kazuki; Kei Hiramatsu; Satoshi Abe; Yuichi Iida; Shoko Takehara; Tadashi Nishida; Tetsuya Ohbayashi; Teruhiko Wakayama; Mitsuo Oshimura
Human chromosome fragments (hCFs) and human artificial chromosomes (HACs) can be transferred into mouse ES cells to produce trans-chromosomic (Tc) mice. Although hCFs and HACs containing large genomic DNAs can be autonomously maintained in Tc mice, their retention rate is variable in mouse ES cell lines and Tc mouse tissues, possibly because of centromere differences between the species. To improve the retention rate of artificial chromosomes in mouse cells, we constructed novel mouse artificial chromosome (MAC) vectors by truncating a natural mouse chromosome at a site adjacent to the centromeric region. We obtained cell clones containing the MAC vectors that were stably maintained in mouse ES cells and various tissues in Tc mice. The MACs possess acceptor sites into which a desired gene or genes can be inserted. Thus, Tc mice harboring the MAC vectors may be valuable tools for functional analyses of desired genes, producing humanized model mice, and synthetic biology.
Journal of Human Genetics | 2001
Jun Inoue; Kohzoh Mitsuya; Shinji Maegawa; Hiroyuki Kugoh; Mitsutaka Kadota; Daiji Okamura; Tokuyuki Shinohara; Shigeki Nishihara; Shoko Takehara; Kaori Yamauchi; Thomas C. Schulz; Mitsuo Oshimura
AbstractAs an in vitro assay system for the identification of human imprinted genes, a library of human/mouse A9 monochromosomal hybrids containing a single, intact bsr-tagged human chromosome of known parental origin, derived from normal human fibroblasts, has been previously generated by microcell-mediated chromosome transfer (MMCT). To supplement this assay system, we constructed additional 700 A9 monochromosomal hybrids, using a pSTneo or pPGKneo selection marker. To validate the A9 hybrids, we screened them with chromosome-specific polymorphic markers, and identified the hybrids containing either human chromosome 6, 7, 14, 18, or 21 of known parental origin. Matching paternal and maternal chromosome pairs of A9 hybrids were identified for chromosomes 6, 7, 14, and 18. The paternal-specific expression of ZAC (zinc finger protein, which regulates apoptosis and cell cycle arrest) and HYMAI (hydatidiform mole-associated and imprinted transcript), and the maternal-specific methylation of a CpG island within an imprinted domain on human chromosome 6q24, were maintained in A9 hybrids. For an example, we profiled the expression of expressed sequence tags (ESTs) and the methylation of CpG islands in the 300-kb imprinted domain around 6q24, which may be associated with cancers and transient neonatal diabetes mellitus (TNDM). Thus, the 700 A9 hybrids should be useful for various aspects of imprinting studies.
Biochemical and Biophysical Research Communications | 2013
Kanako Kazuki; Shoko Takehara; Narumi Uno; Natsuko Imaoka; Satoshi Abe; Masato Takiguchi; Kei Hiramatsu; Mitsuo Oshimura; Yasuhiro Kazuki
Human artificial chromosomes (HACs) and mouse artificial chromosomes (MACs) display several advantages as gene delivery vectors, such as stable episomal maintenance that avoids insertional mutations and the ability to carry large gene inserts including the regulatory elements. Previously, we showed that a MAC vector developed from a natural mouse chromosome by chromosome engineering was more stably maintained in adult tissues and hematopoietic cells in mice than HAC vectors. In this study, to expand the utility for a gene delivery vector in human cells and mice, we investigated the long-term stability of the MACs in cultured human cells and transchromosomic mice. We also investigated the chromosomal copy number-dependent expression of genes on the MACs in mice. The MAC was stably maintained in human HT1080 cells in vitro during long-term culture. The MAC was stably maintained at least to the F8 and F4 generations in ICR and C57BL/6 backgrounds, respectively. The MAC was also stably maintained in hematopoietic cells and tissues derived from old mice. Transchromosomic mice containing two or four copies of the MAC were generated by breeding. The DNA contents were comparable to the copy number of the MACs in each tissue examined, and the expression of the EGFP gene on the MAC was dependent on the chromosomal copy number. Therefore, the MAC vector may be useful not only for gene delivery in mammalian cells but also for animal transgenesis.
Scientific Reports | 2015
Yasuhiro Kazuki; Yuwna Yakura; Satoshi Abe; Mitsuhiko Osaki; Naoyo Kajitani; Kanako Kazuki; Shoko Takehara; Kazuhisa Honma; Hirofumi Suemori; Satoshi Yamazaki; Tetsushi Sakuma; Tsutomu Toki; Ritsuko Shimizu; Hiromitsu Nakauchi; Takashi Yamamoto; Mitsuo Oshimura
Infants with Down syndrome (DS) are at a high risk of developing transient abnormal myelopoiesis (TAM). A GATA1 mutation leading to the production of N-terminally truncated GATA1 (GATA1s) in early megakaryocyte/erythroid progenitors is linked to the onset of TAM and cooperated with the effect of trisomy 21 (Ts21). To gain insights into the underlying mechanisms of the progression to TAM in DS patients, we generated human pluripotent stem cells harbouring Ts21 and/or GATA1s by combining microcell-mediated chromosome transfer and genome editing technologies. In vitro haematopoietic differentiation assays showed that the GATA1s mutation blocked erythropoiesis irrespective of an extra chromosome 21, while Ts21 and the GATA1s mutation independently perturbed megakaryopoiesis and the combination of Ts21 and the GATA1s mutation synergistically contributed to an aberrant accumulation of skewed megakaryocytes. Thus, the DS model cells generated by these two technologies are useful in assessing how GATA1s mutation is involved in the onset of TAM in patients with DS.
Journal of Lipid Research | 2013
Mari Hashimoto; Kaoru Kobayashi; Mio Watanabe; Yasuhiro Kazuki; Shoko Takehara; Asumi Inaba; Shin-ichiro Nitta; Naoto Senda; Mitsuo Oshimura; Kan Chiba
Here, we studied the effects of cytochrome P450 (CYP)3A deficiency on the mRNA expression of genes encoding regulators of hepatic cholesterol levels using Cyp3a-knockout (Cyp3a−/−) mice. The mRNA expression levels of genes encoding enzymes involved in cholesterol biosynthesis in the livers of Cyp3a−/− mice were higher than those of wild-type (WT) mice. Nuclear levels of sterol regulatory element-binding protein-2 (SREBP-2), which enhances cholesterol biosynthesis, were also higher in the livers of Cyp3a−/− mice. Binding of SREBP-2 to the Hmgcs1 gene promoter was more abundant in the livers of Cyp3a−/− mice. These results suggest that deficiency of CYP3A enzymes enhances transcription of genes encoding enzymes involved in cholesterol biosynthesis via activation of SREBP-2. On the other hand, hepatic cholesterol levels in Cyp3a−/− mice were 20% lower than those in WT mice. The mRNA expression levels of genes encoding enzymes involved in bile acid synthesis, plasma levels of 7α-hydroxy-4-cholesten-3-one and hepatic levels of total bile acid were significantly higher in Cyp3a−/− mice than in WT mice. These findings suggest that reduction of hepatic total cholesterol in Cyp3a−/− mice would be the consequence of enhanced bile acid synthesis. Therefore, CYP3A enzymes appear to play roles in the synthesis of cholesterol and bile acid in vivo.
BMC Biotechnology | 2015
Masaharu Hiratsuka; Kana Ueda; Narumi Uno; Katsuhiro Uno; Sayaka Fukuhara; Hajime Kurosaki; Shoko Takehara; Mitsuhiko Osaki; Yasuhiro Kazuki; Yoshikazu Kurosawa; Takafumi Nakamura; Motonobu Katoh; Mitsuo Oshimura
BackgroundHuman artificial chromosome (HAC) vectors have some unique characteristics as compared with conventional vectors, carrying large transgenes without size limitation, showing persistent expression of transgenes, and existing independently from host genome in cells. With these features, HACs are expected to be promising vectors for modifications of a variety of cell types. However, the method of introduction of HACs into target cells is confined to microcell-mediated chromosome transfer (MMCT), which is less efficient than other methods of vector introduction. Application of Measles Virus (MV) fusogenic proteins to MMCT instead of polyethylene glycol (PEG) has partly solved this drawback, whereas the tropism of MV fusogenic proteins is restricted to human CD46- or SLAM-positive cells.ResultsHere, we show that retargeting of microcell fusion by adding anti-Transferrin receptor (TfR) single chain antibodies (scFvs) to the extracellular C-terminus of the MV-H protein improves the efficiency of MV-MMCT to human fibroblasts which originally barely express both native MV receptors, and are therefore resistant to MV-MMCT. Efficacy of chimeric fusogenic proteins was evaluated by the evidence that the HAC, tagged with a drug-resistant gene and an EGFP gene, was transferred from CHO donor cells into human fibroblasts. Furthermore, it was demonstrated that no perturbation of either the HAC status or the functions of transgenes was observed on account of retargeted MV-MMCT when another HAC carrying four reprogramming factors (iHAC) was transferred into human fibroblasts.ConclusionsRetargeted MV-MMCT using chimeric H protein with scFvs succeeded in extending the cell spectrum for gene transfer via HAC vectors. Therefore, this technology could facilitate the systematic cell engineering by HACs.
Scientific Reports | 2016
Yasuhiro Kazuki; Masaharu Akita; Kaoru Kobayashi; Mitsuhiko Osaki; Daisuke Satoh; Ryo Ohta; Satoshi Abe; Shoko Takehara; Kanako Kazuki; Hiroshi Yamazaki; Tetsuya Kamataki; Mitsuo Oshimura
Thalidomide is a teratogen in humans but not in rodents. It causes multiple birth defects including malformations of limbs, ears, and other organs. However, the species-specific mechanism of thalidomide teratogenicity is not completely understood. Reproduction of the human teratogenicity of thalidomide in rodents has previously failed because of the lack of a model reflecting human drug metabolism. In addition, because the maternal metabolic effect cannot be eliminated, the migration of unchanged thalidomide to embryos is suppressed, and the metabolic activation is insufficient to develop teratogenicity. Previously, we generated transchromosomic mice containing a human cytochrome P450 (CYP) 3A cluster in which the endogenous mouse Cyp3a genes were deleted. Here, we determined whether human CYP3A or mouse Cyp3a enzyme expression was related to the species difference in a whole embryo culture system using humanized CYP3A mouse embryos. Thalidomide-treated embryos with the human CYP3A gene cluster showed limb abnormalities, and human CYP3A was expressed in the placenta, suggesting that human CYP3A in the placenta may contribute to the teratogenicity of thalidomide. These data suggest that the humanized CYP3A mouse is a useful model to predict embryonic toxicity in humans.