Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shouichi Sakakihara is active.

Publication


Featured researches published by Shouichi Sakakihara.


Biophysical Journal | 2010

Simple Dark-Field Microscopy with Nanometer Spatial Precision and Microsecond Temporal Resolution

Hiroshi Ueno; So Nishikawa; Ryota Iino; Kazuhito V. Tabata; Shouichi Sakakihara; Toshio Yanagida; Hiroyuki Noji

Molecular motors such as kinesin, myosin, and F(1)-ATPase are responsible for many important cellular processes. These motor proteins exhibit nanometer-scale, stepwise movements on micro- to millisecond timescales. So far, methods developed to measure these small and fast movements with high spatial and temporal resolution require relatively complicated experimental systems. Here, we describe a simple dark-field imaging system that employs objective-type evanescent illumination to selectively illuminate a thin layer on the coverslip and thus yield images with high signal/noise ratios. Only by substituting the dichroic mirror in conventional objective-type total internal reflection fluorescence microscope with a perforated mirror, were nanometer spatial precision and microsecond temporal resolution simultaneously achieved. This system was applied to the study of the rotary mechanism of F(1)-ATPase. The fluctuation of a gold nanoparticle attached to the gamma-subunit during catalytic dwell and the stepping motion during torque generation were successfully visualized with 9.1-mus temporal resolution. Because of the simple optics, this system will be applicable to various biophysical studies requiring high spatial and temporal resolution in vitro and also in vivo.


Lab on a Chip | 2010

A single-molecule enzymatic assay in a directly accessible femtoliter droplet array

Shouichi Sakakihara; Suguru Araki; Ryota Iino; Hiroyuki Noji

The enzyme assay in a femtoliter chamber array is a simple and efficient method for concentrating the reaction product; it greatly improves the detection sensitivity down to the single-molecule level. However, in previous methods, controlling the initiation and termination of the reaction in each chamber is difficult once enclosed. Furthermore, the recovery of the enzyme and product is also difficult. To overcome these drawbacks, we developed a femtoliter droplet array in which the individual droplets are fixed on the substrate and are directly accessible from outside. A hydrophilic-in-hydrophobic micropatterned surface was used for the preparation of the droplets. When the aqueous solution on the surface is exchanged with oil, the hydrophilic surface retains the aqueous solution, and more than 10(6) dome-shaped droplets that are usable for further assay can be prepared simultaneously. The curvature radius of the droplet obeys the Young-Laplace equation, and the volume can be precisely controlled by the micropipette, which applies pressure into the droplet. Changing the pressure makes the addition, collection, and exchange of the aqueous content for individual droplets possible. Using these advantages, we successfully measured the kinetic parameters of the single-molecule enzyme β-galactosidase and rotary motor protein F(1)-ATPase enclosed in a droplet.


Lab on a Chip | 2012

Large-scale femtoliter droplet array for digital counting of single biomolecules

Soo Hyeon Kim; Shino Iwai; Suguru Araki; Shouichi Sakakihara; Ryota Iino; Hiroyuki Noji

We present a novel device employing one million femtoliter droplets immobilized on a substrate for the quantitative detection of extremely low concentrations of biomolecules in a sample. Surface-modified polystyrene beads carrying either zero or a single biomolecule-reporter enzyme complex are efficiently isolated into femtoliter droplets formed on hydrophilic-in-hydrophobic surfaces. Using a conventional micropipette, this is achieved by sequential injection first with an aqueous solution containing beads, and then with fluorinated oil. The concentration of target biomolecules is estimated from the ratio of the number of signal-emitting droplets to the total number of trapped beads (digital counting). The performance of our digital counting device was demonstrated by detecting a streptavidin-β-galactosidase conjugate with a limit of detection (LOD) of 10 zM. The sensitivity of our device was >20-fold higher than that noted in previous studies where a smaller number of reactors (fifty thousand reactors) were used. Such a low LOD was achieved because of the large number of droplets in an array, allowing simultaneous examination of a large number of beads. When combined with bead-based enzyme-linked immunosorbent assay (digital ELISA), the LOD for the detection of prostate specific antigen reached 2 aM. This value, again, was improved over that noted in a previous study, because of the decreased coefficient of variance of the background measurement determined by the Poisson noise. Our digital counting device using one million droplets has great potential as a highly sensitive, portable immunoassay device that could be used to diagnose diseases.


Nature Chemical Biology | 2012

Mechanical modulation of catalytic power on F1-ATPase

Rikiya Watanabe; Daichi Okuno; Shouichi Sakakihara; Katsuya Shimabukuro; Ryota Iino; Masasuke Yoshida; Hiroyuki Noji

The conformational fluctuation of enzymes has a crucial role in reaction acceleration. However, the contribution to catalysis enhancement of individual substates with conformations far from the average conformation remains unclear. We studied the catalytic power of the rotary molecular motor F(1)-ATPase from thermophilic Bacillus PS3 as it was stalled in transient conformations far from a stable pausing angle. The rate constants of ATP binding and hydrolysis were determined as functions of the rotary angle. Both rates exponentially increase with rotation, revealing the molecular basis of positive cooperativity among three catalytic sites: elementary reaction steps are accelerated via the mechanical rotation driven by other reactions on neighboring catalytic sites. The rate enhancement induced by ATP binding upon rotation was greater than that brought about by hydrolysis, suggesting that the ATP binding step contributes more to torque generation than does the hydrolysis step. Additionally, 9% of the ATP-driven rotary step was supported by thermal diffusion, suggesting that acceleration of the ATP docking process occurs via thermally agitated conformational fluctuations.


PLOS ONE | 2011

Evaluation of Multidrug Efflux Pump Inhibitors by a New Method Using Microfluidic Channels

Yoshimi Matsumoto; Kohei Hayama; Shouichi Sakakihara; Kunihiko Nishino; Hiroyuki Noji; Ryota Iino; Akihito Yamaguchi

Fluorescein-di-β-d-galactopyranoside (FDG), a fluorogenic compound, is hydrolyzed by β-galactosidase in the cytoplasm of Escherichia coli to produce a fluorescent dye, fluorescein. We found that both FDG and fluorescein were substrates of efflux pumps, and have developed a new method to evaluate efflux-inhibitory activities in E. coli using FDG and a microfluidic channel device. We used E. coli MG1655 wild-type, ΔacrB (ΔB), ΔtolC (ΔC) and ΔacrBΔtolC (ΔBC) harboring plasmids carrying the mexAB-oprM (pABM) or mexXY-oprM (pXYM) genes of Pseudomonas aeruginosa. Two inhibitors, MexB-specific pyridopyrimidine (D13-9001) and non-specific Phe-Arg-β-naphthylamide (PAβN) were evaluated. The effects of inhibitors on pumps were observed using the microfluidic channel device under a fluorescence microscope. AcrAB-TolC and analogous pumps effectively prevented FDG influx in wild-type cells, resulting in no fluorescence. In contrast, ΔB or ΔC easily imported and hydrolyzed FDG to fluorescein, which was exported by residual pumps in ΔB. Consequently, fluorescent medium in ΔB and fluorescent cells of ΔC and ΔBC were observed in the microfluidic channels. D13-9001 substantially increased fluorescent cell number in ΔBC/pABM but not in ΔBC/pXYM. PAβN increased medium fluorescence in all strains, especially in the pump deletion mutants, and caused fluorescein accumulation to disappear in ΔC. The checkerboard method revealed that D13-9001 acts synergistically with aztreonam, ciprofloxacin, and erythromycin only against the MexAB-OprM producer (ΔBC/pABM), and PAβN acts synergistically, especially with erythromycin, in all strains including the pump deletion mutants. The results obtained from PAβN were similar to the results from membrane permeabilizer, polymyxin B or polymyxin B nonapeptide by concentration. The new method clarified that D13-9001 specifically inhibited MexAB-OprM in contrast to PAβN, which appeared to be a substrate of the pumps and permeabilized the membranes in E. coli.


FEBS Letters | 2009

Acceleration of the ATP-binding rate of F1-ATPase by forcible forward rotation

Yuko Iko; Kazuhito V. Tabata; Shouichi Sakakihara; Takako Nakashima; Hiroyuki Noji

F1‐ATPase (F1) is a reversible ATP‐driven rotary motor protein. When its rotary shaft is reversely rotated, F1 produces ATP against the chemical potential of ATP hydrolysis, suggesting that F1 modulates the rate constants and equilibriums of catalytic reaction steps depending on the rotary angle of the shaft. Although the chemomechanical coupling scheme of F1 has been determined, it is unclear how individual catalytic reaction steps depend on its rotary angle. Here, we report direct evidence that the ATP‐binding rate of F1 increases upon the forward rotation of the rotor, and its binding affinity to ATP is enhanced by rotation.


Lab on a Chip | 2012

A single-cell drug efflux assay in bacteria by using a directly accessible femtoliter droplet array

Ryota Iino; Kohei Hayama; Hiromi Amezawa; Shouichi Sakakihara; Soo Hyeon Kim; Yoshimi Matsumono; Kunihiko Nishino; Akihito Yamaguchi; Hiroyuki Noji

Active efflux of drugs, such as antibiotics, from a cell is one of the major mechanisms that cause multi-drug resistance in bacteria. Here we report a method to assess drug efflux activity in individual Escherichia coli cells enclosed and isolated in a directly accessible femtoliter droplet array with a fluorogenic compound. The inhibitory effect of a chemical compound on an exogenously expressed efflux pump system from pathogenic bacteria was easily detected at the single-cell level. We also present a proof-of-principle experiment to screen for the gene encoding a drug efflux pump by collecting individual droplets containing single cells in which the drug efflux activity was restored after introduction of the exogenous gene from pathogenic bacteria. Our approach will be a useful tool to screen novel pump inhibitors and efflux pump genes, and to overcome infectious diseases caused by multi-drug-resistant bacteria.


Journal of Engineering Materials and Technology-transactions of The Asme | 2013

Focused Ion Beam Induced Surface Damage Effect on the Mechanical Properties of Silicon Nanowires

Tatsuya Fujii; Takahiro Namazu; Koichi Sudoh; Shouichi Sakakihara; Shozo Inoue

In this paper, the effect of surface damage induced by focused ion beam (FIB) fabrication on the mechanical properties of silicon (Si) nanowires (NWs) was investigated. Uniaxial tensile testing of the NWs was performed using a reusable on-chip tensile test device with 1000 pairs of comb structures working as an electrostatic force actuator, a capacitive displacement sensor, and a force sensor. Si NWs were made from silicon-on-nothing (SON) membranes that were produced by deep reactive ion etching hole fabrication and ultrahigh vacuum annealing. Micro probe manipulation and film deposition functions in a FIB system were used to bond SON membranes to the devices sample stage and then to directly fabricate Si NWs on the device. All the NWs showed brittle fracture in ambient air. The Youngs modulus of 57 nm-wide NW was 107.4 GPa, which was increased to 144.2 GPa with increasing the width to 221 nm. The fracture strength ranged from 3.9 GPa to 7.3 GPa. By assuming the thickness of FIB-induced damage layer, the Youngs modulus of the layer was estimated to be 96.2 GPa, which was in good agreement with the literature value for amorphous Si.


PLOS ONE | 2016

A Microfluidic Channel Method for Rapid Drug-Susceptibility Testing of Pseudomonas aeruginosa

Yoshimi Matsumoto; Shouichi Sakakihara; Andrey Grushnikov; Kazuma Kikuchi; Hiroyuki Noji; Akihito Yamaguchi; Ryota Iino; Yasushi Yagi; Kunihiko Nishino

The recent global increase in the prevalence of antibiotic-resistant bacteria and lack of development of new therapeutic agents emphasize the importance of selecting appropriate antimicrobials for the treatment of infections. However, to date, the development of completely accelerated drug susceptibility testing methods has not been achieved despite the availability of a rapid identification method. We proposed an innovative rapid method for drug susceptibility testing for Pseudomonas aeruginosa that provides results within 3 h. The drug susceptibility testing microfluidic (DSTM) device was prepared using soft lithography. It consisted of five sets of four microfluidic channels sharing one inlet slot, and the four channels are gathered in a small area, permitting simultaneous microscopic observation. Antimicrobials were pre-introduced into each channel and dried before use. Bacterial suspensions in cation-adjusted Mueller–Hinton broth were introduced from the inlet slot and incubated for 3 h. Susceptibilities were microscopically evaluated on the basis of differences in cell numbers and shapes between drug-treated and control cells, using dedicated software. The results of 101 clinically isolated strains of P. aeruginosa obtained using the DSTM method strongly correlated with results obtained using the ordinary microbroth dilution method. Ciprofloxacin, meropenem, ceftazidime, and piperacillin caused elongation in susceptible cells, while meropenem also induced spheroplast and bulge formation. Morphological observation could alternatively be used to determine the susceptibility of P. aeruginosa to these drugs, although amikacin had little effect on cell shape. The rapid determination of bacterial drug susceptibility using the DSTM method could also be applicable to other pathogenic species, and it could easily be introduced into clinical laboratories without the need for expensive instrumentation.


Lab on a Chip | 2007

An integrated system for enzymatic cleavage and electrostretching of freely-suspended single DNA molecules

Liza Lam; Shouichi Sakakihara; Koji Ishizuka; Shoji Takeuchi; Hiroyuki Noji

A novel polyacrylamide gel-based femtolitre microchamber system for performing single-molecule restriction enzyme assay on freely-suspended DNA molecules and subsequent DNA electrostretching by applying an alternating electric field has been developed. We attempted the integration by firstly initiating restriction enzyme reaction on a fluorescent-stained lambdaDNA molecule, encapsulated in a microchamber, using magnesium as an external trigger. Upon complete digestion, the cleaved DNA fragments were electrostretched to analyze the DNA lengths optically. The critical parameters for electrostretching of encapsulated DNA were investigated and optimum stretching was achieved by using 1.5 kHz pulses with electric field strength in the order of 10(3) V cm(-1) in 7% linear polyacrylamide (LPA) solution. LPA was adopted to minimize the adverse effects of ionic thermal agitation on molecular dielectrophoretic elongation in the microchamber. In our experiments, as the fragments were not immobilized throughout the entire protocol, it was found from repeated tests that digestion always occurred, producing the expected number of cleaved fragments. This versatile microchamber approach realized direct observation of these biological reactions on real-time basis at a single-molecule level. Furthermore, with the employment of porous polyacrylamide gel, the effective manipulation of DNA assays and the ability to combine conventionally independent bioanalytical processes have been demonstrated.

Collaboration


Dive into the Shouichi Sakakihara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryota Iino

Graduate University for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takahiro Namazu

Aichi Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge