Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shouping Yang is active.

Publication


Featured researches published by Shouping Yang.


Journal of Integrative Plant Biology | 2014

Exploration of presence/absence variation and corresponding polymorphic markers in soybean genome.

Yufeng Wang; Jiangjie Lu; Shou-Yi Chen; Liping Shu; Reid G. Palmer; Guangnan Xing; Yan Li; Shouping Yang; Deyue Yu; Tuanjie Zhao; Junyi Gai

This study was designed to reveal the genome-wide distribution of presence/absence variation (PAV) and to establish a database of polymorphic PAV markers in soybean. The 33 soybean whole-genome sequences were compared to each other with that of Williams 82 as a reference genome. A total of 33,127 PAVs were detected and 28,912 PAV markers with their primer sequences were designed as the database NJAUSoyPAV_1.0. The PAVs scattered on whole genome while only 518 (1.8%) overlapped with simple sequence repeats (SSRs) in BARCSOYSSR_1.0 database. In a random sample of 800 PAVs, 713 (89.13%) showed polymorphism among the 12 differential genotypes. Using 126 PAVs and 108 SSRs to test a Chinese soybean germplasm collection composed of 828 Glycine soja Sieb. et Zucc. and Glycine max (L.) Merr. accessions, the per locus allele number and its variation appeared less in PAVs than in SSRs. The distinctness among alleles/bands of PCR (polymerase chain reaction) products showed better in PAVs than in SSRs, potential in accurate marker-assisted allele selection. The association mapping results showed SSR + PAV was more powerful than any single marker systems. The NJAUSoyPAV_1.0 database has enriched the source of PCR markers, and may fit the materials with a range of per locus allele numbers, if jointly used with SSR markers.


Journal of Experimental Botany | 2015

Establishment of a 100-seed weight quantitative trait locus–allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes

Yinghu Zhang; Jianbo He; Yufeng Wang; Guangnan Xing; Jinming Zhao; Yan Li; Shouping Yang; Reid G. Palmer; Tuanjie Zhao; Junyi Gai

A representative sample comprising 366 accessions from the Chinese soybean landrace population (CSLRP) was tested under four growth environments for determination of the whole-genome quantitative trait loci (QTLs) system of the 100-seed weight trait (ranging from 4.59g to 40.35g) through genome-wide association study (GWAS). A total of 116 769 single nucleotide polymorphisms (SNPs) were identified and organized into 29 121 SNP linkage disequilibrium blocks (SNPLDBs) to fit the property of multiple alleles/haplotypes per locus in germplasm. An innovative two-stage GWAS was conducted using a single locus model for shrinking the marker number followed by a multiple loci model utilizing a stepwise regression for the whole-genome QTL identification. In total, 98.45% of the phenotypic variance (PV) was accounted for by four large-contribution major QTLs (36.33%), 51 small-contribution major QTLs (43.24%), and a number of unmapped minor QTLs (18.88%), with the QTL×environment variance representing only 1.01% of the PV. The allele numbers of each QTL ranged from two to 10. A total of 263 alleles along with the respective allele effects were estimated and organized into a 263×366 matrix, giving the compact genetic constitution of the CSLRP. Differentiations among the ecoregion matrices were found. No landrace had alleles which were all positive or all negative, indicating a hidden potential for recombination. The optimal crosses within and among ecoregions were predicted, and showed great transgressive potential. From the QTL system, 39 candidate genes were annotated, of which 26 were involved with the gene ontology categories of biological process, cellular component, and molecular function, indicating that diverse genes are involved in directing the 100-seed weight.


Plant and Cell Physiology | 2016

Genome-Wide Identification of Soybean U-Box E3 Ubiquitin Ligases and Roles of GmPUB8 in Negative Regulation of Drought Stress Response in Arabidopsis

Ning Wang; Yaping Liu; Yahui Cong; Tingting Wang; Xiujuan Zhong; Shouping Yang; Yan Li; Junyi Gai

Plant U-box (PUB) E3 ubiquitin ligases play important roles in hormone signaling pathways and response to abiotic stresses, but little is known about them in soybean, Glycine max. Here, we identified and characterized 125 PUB genes from the soybean genome, which were classified into eight groups according to their protein domains. Soybean PUB genes (GmPUB genes) are broadly expressed in many tissues and are a little more abundant in the roots than in the other tissues. Nine GmPUB genes, GmPUB1-GmPUB9, showed induced expression patterns by drought, and the expression of GmPUB8 was also induced by exogenous ABA and NaCl. GmPUB8 was localized to post-Golgi compartments, interacting with GmE2 protein as demonstrated by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) experiments, and showed E3 ubiquitin ligase activity by in vitro ubiquitination assay. Heterogeneous overexpression of GmPUB8 in Arabidopsis showed decreased drought tolerance, enhanced sensitivity with respect to osmotic and salt stress inhibition of seed germination and seedling growth, and inhibited ABA- and mannitol-mediated stomatal closure. Eight drought stress-related genes were less induced in GmPUB8-overexpressing Arabidopsis after drought treatment compared with the wild type and the pub23 mutant. Taken together, our results suggested that GmPUB8 might negatively regulate plant response to drought stress. In addition, Y2H and BiFC showed that GmPUB8 interacted with soybean COL (CONSTANS LIKE) protein. GmPUB8-overexpressing Arabidopsis flowered earlier under middle- and short-day conditions but later under long-day conditions, indicating that GmPUB8 might regulate flowering time in the photoperiod pathway. This study helps us to understand the functions of PUB E3 ubiquitin ligases in soybean.


Plant Science | 2016

Soybean SPX1 is an important component of the response to phosphate deficiency for phosphorus homeostasis

Jingyao Zhang; Xi Zhou; Ying Xu; Minlei Yao; Fengbin Xie; Junyi Gai; Yan Li; Shouping Yang

Phosphate (Pi) homeostasis is required for plant growth and development, but the Pi-signaling pathways in plants still remain largely unknown. Proteins only containing the SPX domain are very important in phosphate (Pi) homeostasis and signaling transduction. In the T-DNA insertion Arabidopsis mutant spx3, AtPHT1-4, AtPHT1-5, AtACP5, AtRNS, and AtAT4 expression levels were increased under Pi-sufficient condition and low Pi condition compared with WT. Meanwhile, the expression levels of these phosphate starvation genes was inhibited in OXSPX1 and spx3/OXSPX1 compared with WT, only under Pi-sufficient condition. These imply that GmSPX1 may negatively control the transcription of Pi starvation responsive genes indirectly. However, there were no differences between expression levels of these PSI genes in spx3 and those in WT under -Pi conditions. These facts imply that the negative regulation of GmSPX1 and AtSPX3 on PSI genes is depending on Pi concentration. Consistent with this, GmSPX1 overexpression in the WT and spx3 decreased the total Pi concentration in plants and changed root hair morphology, suppressing the elongation and number of root hairs compared with the WT and spx3. The yeast two-hybrid assays and BiFC assays demonstrated that GmSPX1 could interact with GmMYB48.The qRT-PCR analysis showed that GmMYB48 is a new phosphate starvation induced transcription factor in soybean. Also, GmSPX1 overexpression led to decreased transcripts of AtMYB4, an ortholog of GmMYB48, in OXSPX1. Together, these results suggest that GmSPX1 is a negative regulator in the Pi signaling network of soybean, and the interaction of GmSPX1/GmMYB48 can be considered a potential candidate suppressor.


Molecular Breeding | 2018

Genome-wide analysis of DNA methylation to identify genes and pathways associated with male sterility in soybean

Shaohuai Han; Yanwei Li; Jiajia Li; Hao Zhang; Xianlong Ding; Tingting He; Junyi Gai; Shouping Yang

DNA methylation is an epigenetic modification, which is important for gene expression regulation. Although genome-wide DNA methylation studies have been reported in several plant species, the difference in the methylation pattern between the cytoplasmic male sterile (CMS) line and its maintainer in soybean remains unclear. We compared genome-wide DNA methylation between the soybean CMS line NJCMS1A and its maintainer NJCMS1B using methylated DNA immunoprecipitation combined with high-throughput sequencing (MeDIP-seq) technology. The results showed that the methylation level was higher in transposable elements (TEs) than promoter and intron; however, the methylation levels varied among different types of TEs with the highest level for long terminal repeats (LTRs) and the lowest for transcription start sites (TSS) and transcription termination sites (TTS). We observed 178 differentially methylated genes (DMGs) between NJCMS1A and NJCMS1B, including 156 hypo-methylated and 22 hyper-methylated genes in NJCMS1A compared to NJCMS1B. Gene Ontology (GO) analysis showed that 114 DMGs were annotated to one or more GO categories, among which four GO terms were significantly enriched. KEGG pathway analysis showed that 18 DMGs were significantly enriched in 10 metabolism pathways, including homologous recombination, purine metabolism, proteasome, non-homologous end-joining, and pyrimidine metabolism. Further analysis indicated that the male sterility of NJCMS1A might be caused by the altered DNA methylation and disturbed metabolism pathways of some key DMGs, involved in carbohydrate and energy metabolism, transcriptional regulation, male gametophyte development, encoding mitochondrion protein, etc. However, the relationship between the DMGs and the CMS of NJCMS1A still need further research.


Euphytica | 2018

Identifying QTL–allele system of seed protein content in Chinese soybean landraces for population differentiation studies and optimal cross predictions

Yinghu Zhang; Jianbo He; Shan Meng; Meifeng Liu; Guangnan Xing; Yan Li; Shouping Yang; Jiayin Yang; Tuanjie Zhao; Junyi Gai

Soybean originated in ancient China has been quickly extended globally as a major protein and oil crop. The QTL–allele constitution of seed protein content (SPC) in the Chinese soybean landrace population (CSLRP) was studied using a representative sample composed of 365 accessions tested under multiple environments and analysed under the novel restricted two-stage multi-locus genome-wide association study (RTM-GWAS) procedure based on 29,121 SNPLDB (single nucleotide polymorphism linkage disequilibrium blocks) markers. The SPC varied from 37.51 to 50.46% among accessions, for which 89 QTLs, each with 2–9 alleles in a total of 255 alleles were identified, accounting for 83.16% of the phenotypic variation covering most of the genetic variation (h2 = 84.31%). The QTL–alleles of the 365 landraces were organized into a 255 × 365 QTL–allele matrix as the compact form of SPC genetic constitution in CSLRP. Of the 89 QTLs, 53 showed significantly differentiated allele frequency distribution patterns among geographic eco-regions (sub-populations). There were 32.09% alleles not common among sub-populations but found only in some sub-populations; new allele(s) emerged on some loci in some respective sub-populations, with Eco-region III showing less but Eco-region VI more emergence. The QTL–allele matrix was also used for prediction of optimal crosses for breeding purpose to reach a 99th percentile potential of up to 54.81%, more than the highest accession (50.46%). From the 89 QTLs, 59 SPC candidate genes involving biological processes, cellular components and molecular functions were annotated. Among them, Glyma18g13574 and Glyma20g21370 were inferred as two of the major SPC genes in the whole genome.


Crop & Pasture Science | 2018

Bacterial artificial chromosome clones randomly selected for sequencing reveal genomic differences between soybean cultivars

Tingting He; Longshu Yang; Xianlong Ding; Linfeng Chen; Yanwei Li; Tanliu Wang; Hao Zhang; Junyi Gai; Shouping Yang

Abstract. This study pioneered the use of multiple technologies to combine the bacterial artificial chromosome (BAC) pooling strategy with high-throughput next- and third-generation sequencing technologies to analyse genomic difference. To understand the genetic background of the Chinese soybean cultivar N23601, we built a BAC library and sequenced 10 randomly selected clones followed by de novo assembly. Comparative analysis was conducted against the reference genome of Glycine max var. Williams 82 (2.0). Therefore, our result is an assessment of the reference genome. Our results revealed that 3517 single nucleotide polymorphisms (SNPs) and 662 insertion–deletions (InDels) occurred in ∼1.2 Mb of the genomic region and that four of the 10 BAC clones contained 15 large structural variations (72 887 bp) compared with the reference genome. Gene annotation of the reference genome showed that Glyma.18g181000 was missing from the corresponding position of the 10 BAC clones. Additionally, there may be a problem with the assembly of some positions of the reference genome. Several gap regions in the reference genome could be supplemented by using the complete sequence of the 10 BAC clones. We believe that accurate and complete BAC sequence is a valuable resource that contributes to the completeness of the reference genome.


Journal of Plant Biology | 2017

Cloning and functional analysis of two GmDeg genes in soybean [Glycine max (L.) Merr.]

Xing Kong; Jingyao Zhang; Deyue Yu; Junyi Gai; Shouping Yang

Although light is the ultimate substrate in photosynthesis, strong light can also be harmful and lead to photoinhibition. The DEG proteases play important roles in the degradation of misfolded and damaged proteins. In this study, two photoinhibition-related genes from soybean [Glycine max (L.) Merr.], GmDeg1 and GmDeg2, were cloned. Bioinformatics analysis indicated that these two proteases both contain a PDZ domain and are serine proteases. The expression levels of GmDeg1 and GmDeg2 increased significantly after 12 h of photooxidation treatment, indicating that GmDeg1 and GmDeg2 might play protective roles under strong light conditions. In in vitro proteolytic degradation assays, recombinant GmDeg1 and GmDeg2 demonstrated biological activities at temperatures ranging from 20°C to 60°C and at pH 5.0 to 8.0. By contrast, the proteases showed no proteolytic effect in the presence of a serine protease inhibitor. Taken together, these results provided strong evidence that GmDeg1 and GmDeg2 are serine proteases that could degrade the model substrate in vitro, indicating that they might degrade damaged D1 protein and other mis-folded proteins in vivo. Furthermore, GmDeg1 and GmDeg2 were transformed into Arabidopsis thaliana to obtain transgenic plants. Leaves from the transgenic and wild-type plants were subjected to strong light conditions in vitro, and the PSII photochemical efficiency (Fv/Fm) was measured. The Fv/Fm of the transgenic plants was significantly higher than that of the wild-type plants at most time points. These results imply that GmDeg1 and GmDeg2 would have similar functions to Arabidopsis AtDeg1, thus accelerating the recovery of PSII photochemical efficiency.


Plant Breeding | 2007

Inheritance and gene tagging of male fertility restoration of cytoplasmic‐nuclear male‐sterile line NJCMS1A in soybean

Shouping Yang; M. P. Duan; Q. C. Meng; J. Qiu; J. M. Fan; Tuanjie Zhao; Deyue Yu; Junyi Gai


Euphytica | 2014

Constitution of resistance to common cutworm in terms of antibiosis and antixenosis in soybean RIL populations

Hyunjee Kim; Guangnan Xing; Yufeng Wang; Tuanjie Zhao; Deyue Yu; Shouping Yang; Yan Li; Shou-Yi Chen; Reid G. Palmer; Junyi Gai

Collaboration


Dive into the Shouping Yang's collaboration.

Top Co-Authors

Avatar

Junyi Gai

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Tuanjie Zhao

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yan Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guangnan Xing

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jianbo He

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yufeng Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Deyue Yu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiangjie Lu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shan Meng

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge