Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tuanjie Zhao is active.

Publication


Featured researches published by Tuanjie Zhao.


BMC Plant Biology | 2014

A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility

Fang Huang; Guangli Xu; Yingjun Chi; Haicui Liu; Qian Xue; Tuanjie Zhao; Junyi Gai; Deyue Yu

BackgroundThe MADS-box transcription factors play fundamental roles in reproductive developmental control. Although the roles of many plant MADS-box proteins have been extensively studied, there are almost no functional studies of them in soybean, an important protein and oil crop in the world. In addition, the MADS-box protein orthologs may have species-specific functions. Controlling male fertility is an important goal in plant hybrid breeding but is difficult in some crops like soybean. The morphological structure of soybean flowers prevents the cross-pollination. Understanding the molecular mechanisms for floral development will aid in engineering new sterile materials that could be applied in hybrid breeding programs in soybean.ResultThrough microarray analysis, a flower-enriched gene in soybean was selected and designated as GmMADS28. GmMADS28 belongs to AGL9/SEP subfamily of MADS-box proteins, localized in nucleus and showed specific expression patterns in floral meristems as well as stamen and petal primordia. Expression of GmMADS28 in the stamens and petals of a soybean mutant NJS-10Hfs whose stamens are converted into petals was higher than in those of wild-type plants. Constitutive expression of GmMADS28 in tobacco promoted early flowering and converted stamens and sepals to petals. Interestingly, transgenic plants increased the numbers of sepal, petal and stamen from five to six and exhibited male sterility due to the shortened and curly filaments and the failure of pollen release from the anthers. The ectopic expression of GmMADS28 was found to be sufficient to activate expression of tobacco homologs of SOC1, LEAFY, AGL8/FUL, and DEF. In addition, we observed the interactions of GmMADS28 with soybean homologs of SOC1, AP1, and AGL8/FUL proteins.ConclusionIn this study, we observed the roles of GmMADS28 in the regulation of floral organ number and petal identity. Compared to other plant AGL9/SEP proteins, GmMADS28 specifically regulates floral organ number, filament length and pollen release. The sterility caused by the ectopic expression of GmMADS28 offers a promising way to genetically produce new sterile material that could potentially be applied in the hybrid breeding of crops like soybean.


Plant Molecular Biology Reporter | 2011

Isolation and Functional Characterization of a SERK Gene from Soybean (Glycine max (L.) Merr.)

Chao Yang; Tuanjie Zhao; Deyue Yu; Junyi Gai

It is well accepted that somatic embryogenesis serves a primary role in plant regeneration. However, it is also a model system to explore the regulatory and morphogenetic events in the life of a plant. To date, a suite of genes that serve important roles in somatic embryogenesis have been isolated and identified. In the present study, a novel gene designated as GmSERK1 was isolated from soybean (Glycine max (L.) Merr). Sequence and structural analysis determined that the GmSERK1 protein, which encodes 624 amino acids, belongs to the somatic embryogenesis receptor-like kinase (SERK) gene family. GmSERK1 shared all the characteristic domains of the SERK family, including five leucine-rich repeats, one proline-rich region motif, transmembrane domain, and kinase domains. DNA gel blot analysis indicated that a single copy of the GmSERK1 gene resides in the soybean genome. The GmSERK1 tissue-specific and induced expression patterns were explored using quantitative real-time PCR. Dissimilar expression levels in various tissues under different treatments were found. In addition, transient expression experiments in onion epidermal cells indicated that the GmSERK1 protein was located on the plasma membrane. The results from this study suggested that GmSERK1, a member of the SERK gene family, exhibits a broader role in various aspects of plant development and function, in addition to its basic functions in somatic embryogenesis.


Journal of Integrative Plant Biology | 2014

Exploration of presence/absence variation and corresponding polymorphic markers in soybean genome.

Yufeng Wang; Jiangjie Lu; Shou-Yi Chen; Liping Shu; Reid G. Palmer; Guangnan Xing; Yan Li; Shouping Yang; Deyue Yu; Tuanjie Zhao; Junyi Gai

This study was designed to reveal the genome-wide distribution of presence/absence variation (PAV) and to establish a database of polymorphic PAV markers in soybean. The 33 soybean whole-genome sequences were compared to each other with that of Williams 82 as a reference genome. A total of 33,127 PAVs were detected and 28,912 PAV markers with their primer sequences were designed as the database NJAUSoyPAV_1.0. The PAVs scattered on whole genome while only 518 (1.8%) overlapped with simple sequence repeats (SSRs) in BARCSOYSSR_1.0 database. In a random sample of 800 PAVs, 713 (89.13%) showed polymorphism among the 12 differential genotypes. Using 126 PAVs and 108 SSRs to test a Chinese soybean germplasm collection composed of 828 Glycine soja Sieb. et Zucc. and Glycine max (L.) Merr. accessions, the per locus allele number and its variation appeared less in PAVs than in SSRs. The distinctness among alleles/bands of PCR (polymerase chain reaction) products showed better in PAVs than in SSRs, potential in accurate marker-assisted allele selection. The association mapping results showed SSR + PAV was more powerful than any single marker systems. The NJAUSoyPAV_1.0 database has enriched the source of PCR markers, and may fit the materials with a range of per locus allele numbers, if jointly used with SSR markers.


Journal of Experimental Botany | 2015

Establishment of a 100-seed weight quantitative trait locus–allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes

Yinghu Zhang; Jianbo He; Yufeng Wang; Guangnan Xing; Jinming Zhao; Yan Li; Shouping Yang; Reid G. Palmer; Tuanjie Zhao; Junyi Gai

A representative sample comprising 366 accessions from the Chinese soybean landrace population (CSLRP) was tested under four growth environments for determination of the whole-genome quantitative trait loci (QTLs) system of the 100-seed weight trait (ranging from 4.59g to 40.35g) through genome-wide association study (GWAS). A total of 116 769 single nucleotide polymorphisms (SNPs) were identified and organized into 29 121 SNP linkage disequilibrium blocks (SNPLDBs) to fit the property of multiple alleles/haplotypes per locus in germplasm. An innovative two-stage GWAS was conducted using a single locus model for shrinking the marker number followed by a multiple loci model utilizing a stepwise regression for the whole-genome QTL identification. In total, 98.45% of the phenotypic variance (PV) was accounted for by four large-contribution major QTLs (36.33%), 51 small-contribution major QTLs (43.24%), and a number of unmapped minor QTLs (18.88%), with the QTL×environment variance representing only 1.01% of the PV. The allele numbers of each QTL ranged from two to 10. A total of 263 alleles along with the respective allele effects were estimated and organized into a 263×366 matrix, giving the compact genetic constitution of the CSLRP. Differentiations among the ecoregion matrices were found. No landrace had alleles which were all positive or all negative, indicating a hidden potential for recombination. The optimal crosses within and among ecoregions were predicted, and showed great transgressive potential. From the QTL system, 39 candidate genes were annotated, of which 26 were involved with the gene ontology categories of biological process, cellular component, and molecular function, indicating that diverse genes are involved in directing the 100-seed weight.


Breeding Science | 2012

Genome-wide genetic dissection of germplasm resources and implications for breeding by design in soybean

Junyi Gai; Lei Chen; Yinghu Zhang; Tuanjie Zhao; Guangnan Xing; Han Xing

“Breeding by Design” as a concept described by Peleman and van der Voort aims to bring together superior alleles for all genes of agronomic importance from potential genetic resources. This might be achievable through high-resolution allele detection based on precise QTL (quantitative trait locus/loci) mapping of potential parental resources. The present paper reviews the works at the Chinese National Center for Soybean Improvement (NCSI) on exploration of QTL and their superior alleles of agronomic traits for genetic dissection of germplasm resources in soybeans towards practicing “Breeding by Design”. Among the major germplasm resources, i.e. released commercial cultivar (RC), farmers’ landrace (LR) and annual wild soybean accession (WS), the RC was recognized as the primary potential adapted parental sources, with a great number of new alleles (45.9%) having emerged and accumulated during the 90 years’ scientific breeding processes. A mapping strategy, i.e. a full model procedure (including additive (A), epistasis (AA), A × environment (E) and AA × E effects), scanning with QTLNetwork2.0 and followed by verification with other procedures, was suggested and used for the experimental data when the underlying genetic model was usually unknown. In total, 110 data sets of 81 agronomically important traits were analyzed for their QTL, with 14.5% of the data sets showing major QTL (contribution rate more than 10.0% for each QTL), 55.5% showing a few major QTL but more small QTL, and 30.0% having only small QTL. In addition to the detected QTL, the collective unmapped minor QTL sometimes accounted for more than 50% of the genetic variation in a number of traits. Integrated with linkage mapping, association mappings were conducted on germplasm populations and validated to be able to provide complete information on multiple QTL and their multiple alleles. Accordingly, the QTL and their alleles of agronomic traits for large samples of RC, LR and WS were identified and then the QTL-allele matrices were established. Based on which the parental materials can be chosen for complementary recombination among loci and alleles to make the crossing plans genetically optimized. This approach has provided a way towards breeding by design, but the accuracy will depend on the precision of the loci and allele matrices.


PLOS ONE | 2014

Overexpression of a Soybean Ariadne-Like Ubiquitin Ligase Gene GmARI1 Enhances Aluminum Tolerance in Arabidopsis

Xiaolian Zhang; Ning Wang; Pei Chen; Mengmeng Gao; Juge Liu; Yufeng Wang; Tuanjie Zhao; Yan Li; Junyi Gai

Ariadne (ARI) subfamily of RBR (Ring Between Ring fingers) proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene) finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L.) Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2–4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress.


Frontiers in Plant Science | 2017

Fine Mapping of a Resistance Gene RpsHN that Controls Phytophthora sojae Using Recombinant Inbred Lines and Secondary Populations

Jingping Niu; Na Guo; Jutao Sun; Lihong Li; Yongce Cao; Shuguang Li; Jianli Huang; Jinming Zhao; Tuanjie Zhao; Han Xing

Phytophthora root rot (PRR), caused by Phytophthora sojae, has negative effects on soybean yield in China and can be controlled by identifying germplasm resources with resistance genes. In this study, the resistance locus RpsHN in the soybean line Meng8206 was mapped using two mapping populations. Initial mapping was realized using two recombinant inbred line (RIL) populations and included 103 F6:8 RILs derived from a cross of Meng8206 × Linhedafenqing, including 2600 bin markers, and 130 F6:8 RILs derived from a cross of Meng8206 × Zhengyang148, including 2267 bin markers. Subsequently, a 159 F2:3 secondary population derived from a cross of Meng8206 × Linmeng6-46, were used to fine map this locus using SSR markers. Finally, the resistance locus from Meng8206 was fine mapped to a 278.7 kb genomic region flanked by SSR markers SSRSOYN-25 and SSRSOYN-44 at a genetic distance of 1.6 and 1.0 cM on chromosome 3 (Chr. 03). Real-time RT-PCR analysis of the possible candidate genes showed that three genes (Glyma.03g04260, Glyma.03g04300, and Glyma.03g04340) are likely involved in PRR resistance. These results will serve as a basis for cloning, transferring of resistant genes and breeding of P. sojae-resistant soybean cultivars through marker-assisted selection.


PLOS ONE | 2014

Genome-wide identification and characterization of RBR ubiquitin ligase genes in soybean.

Pei Chen; Xiaolian Zhang; Tuanjie Zhao; Yan Li; Junyi Gai

RBR (RING1-IBR-RING2) proteins play an important role in protein ubiquitination and are involved in many cellular processes. Recent studies showed plant RBR genes were induced by abiotic and biotic stresses. However, detailed studies on RBR genes in the important oil crop, soybean (Glycine max (L.) Merr.), is still lacking. Here we performed a genome-wide search and identified 24 RBR domain-containing genes from the soybean genome sequence and cloned 11 of them. Most soybean RBR proteins contain a highly conserved RBR supra-domain. Phylogenetic analyses indicated all 24 soybean RBR proteins are most related to the RBR proteins from Phaseolus vulgaris, and could be classified into seven groups including Ariadne A, Ariadne B, ARA54, Plant IIA, Plant IIB, Plant IIC, and Helicase. Tandem duplication and block duplication were found among the Ariadne B and Plant IIC group of soybean RBR genes. Despite the conserved RBR supra-domain, there are extensive variations in the additional protein motifs and exon-intron structures between different groups, which indicate they might have diverse functions. Most soybean RBR proteins are predicted to localize in nucleus, and four of them were experimentally confirmed by GFP fusion proteins. Soybean RBR genes are broadly expressed in many tissue types with a little more abundant in the roots and flowers than leaves, stems, and seeds. The expression of GmRTRTP3 (Plant IIB) and GmRTRTP5 (Plant IIC) are induced by NaCl treatment, which suggests these RBR genes might be involved in soybean response to abiotic stresses.


Euphytica | 1998

Genetic analysis of short petiole and abnormal pulvinus in soybean

Mingan You; Tuanjie Zhao; Junyi Gai; Yang Yen

The short petiole trait is valuable to ideotype breeding for yield. In this study, short petiole and abnormal pulvinus of two mutant lines NJ90L-1SP and D76-1609 were genetically investigated. These two mutants were crossed with each other and with five long petiole and normal pulvinus genotypes. Genetic analysis indicated that short petiole in NJ90L-1SP was controlled by two duplicated loci of a recessive gene, lps2, which also controls the development of abnormal pulvinus. Two duplicated loci of another recessive gene, lps1, which also controls short petiole trait, were found in D76-1609. Our data indicated that these two recessive genes are not allelic. It is possible that these two genes may control different steps of the same physiological pathway toward the development of pulvinus and petiole in soybean.


Frontiers in Plant Science | 2016

Characterizing Two Inter-specific Bin Maps for the Exploration of the QTLs/Genes that Confer Three Soybean Evolutionary Traits

Wubin Wang; Meifeng Liu; Yufeng Wang; Xuliang Li; Shixuan Cheng; Liping Shu; Zheping Yu; Jiejie Kong; Tuanjie Zhao; Junyi Gai

Annual wild soybean (Glycine soja Sieb. and Zucc.), the wild progenitor of the cultivated soybean [Glycine max (L.) Merr.], is valuable for improving the later. The construction of a linkage map is crucial for studying the genetic differentiation between these species, but marker density is the main factor limiting the accuracy of such a map. Recent advances in next-generation sequencing technologies allow for the generation of high-density linkage maps. Here, two sets of inter-specific recombinant inbred line populations, named NJIRNP and NJIR4P, composed of 284 and 161 lines, respectively, were generated from the same wild male parent, PI 342618B, and genotyped by restriction-site-associated DNA sequencing. Two linkage maps containing 5,728 and 4,354 bins were constructed based on 89,680 and 80,995 single nucleotide polymorphisms, spanning a total genetic distance of 2204.6 and 2136.7 cM, with an average distance of 0.4 and 0.5 cM between neighboring bins in NJRINP and NJRI4P, respectively. With the two maps, seven well-studied loci, B1 for seed bloom; G and I for seed coat color; E2, E3, qDTF16.1 and two linked FLOWERING LOCUS T for days to flowering, were detected. In addition, two SB and two DTF loci were newly identified in wild soybean. Using two high-density maps, the mapping resolution was enhanced, e.g., G was narrowed to a region of 0.4 Mb on chromosome 1, encompassing 54 gene models, among which only Glyma01g40590 was predicted to be involved in anthocyanin accumulation, and its interaction with I was verified in both populations. In addition, five genes, Glyma16g03030, orthologous to Arabidopsis Phytochrome A (PHYA); Glyma13g28810, Glyma13g29920, and Glyma13g30710 predicted to encode the APETALA 2 (AP2) domain; and Glyma02g00300, involved in response to red or far red light, might be candidate DTF genes. Our results demonstrate that RAD-seq is a cost-effective approach for constructing high-density and high-quality bin maps that can be used to map QTLs/genes into such small enough regions that their candidate genes can be predicted.

Collaboration


Dive into the Tuanjie Zhao's collaboration.

Top Co-Authors

Avatar

Junyi Gai

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Guangnan Xing

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yufeng Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Deyue Yu

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Shouping Yang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jianbo He

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wubin Wang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yan Li

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Hongyan Yang

Nanjing Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Qingyuan He

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge