Shu Hase
Tohoku University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shu Hase.
Molecular Plant-microbe Interactions | 2007
Daisuke Hondo; Shu Hase; Yoshinori Kanayama; Nobuyuki Yoshikawa; Shigehito Takenaka; Hideki Takahashi
The expression of LeATL6, an ortholog of Arabidopsis ATL6 that encodes a RING-H2 finger protein, was induced in tomato roots treated with a cell wall protein fraction (CWP) elicitor of the biocontrol agent Pythium oligandrum. The LeATL6 protein was expressed as a fusion protein with a maltose-binding protein (MBP) in Escherichia coli, and it catalyzed the transfer of ubiquitin to the MBP moiety on incubation with ubiquitin, the ubiquitin-activating enzyme E1, and the ubiquitin-conjugating enzyme E2; this indicated that LeATL6 represents ubiquitin ligase E3. LeATL6 expression also was induced by elicitor treatment of jail-1 mutant tomato cells in which the jasmonic acid (JA)-mediated signaling pathway was impaired; however, JA-dependent expression of the basic PR-6 and TPI-1 genes that encode proteinase inhibitor II and I, respectively, was not induced in elicitor-treated jail-1 mutants. Furthermore, transient overexpression of LeATL6 under the control of the Cauliflower mosaic virus 35S promoter induced the basic PR6 and TPI-1 expression in wild tomato but not in the jail-1 mutant. In contrast, LeATL6 overexpression did not activate salicylic acid-responsive acidic PR-1 and PR-2 promoters in wild tomato. These results indicated that elicitor-responsive LeATL6 probably regulates JA-dependent basic PR6 and TPI-1 gene expression in tomato. The LeATL6-associated ubiquitin/proteasome system may contribute to elicitor-activated defense responses via a JA-dependent signaling pathway in plants.
Molecular Plant-microbe Interactions | 2004
Ken-Taro Sekine; Ashis Nandi; Takeaki Ishihara; Shu Hase; M. Ikegami; Jyoti Shah; Hideki Takahashi
The Arabidopsis thaliana SSI2 gene encodes a plastid-localized stearoyl-ACP desaturase. The recessive ssi2 mutant allele confers constitutive accumulation of the pathogenesis-related-1 (PR-1) gene transcript and salicylic acid (SA), and enhanced resistance to bacterial and oomycete pathogens. In addition, the ssi2 mutant is a dwarf and spontaneously develops lesions containing dead cells. Here, we show that the ssi2 mutant also confers enhanced resistance to Cucumber mosaic virus (CMV). Compared with the wild-type plant, viral multiplication and systemic spread were diminished in the ssi2 mutant plant. However, unlike the ssi2-conferred resistance to bacterial and oomycete pathogens, the ssi2-conferred enhanced resistance to CMV was retained in the SA-deficient ssi2 nahG plant. In addition, SA application was not effective in limiting CMV multiplication and systemic spread in the CMV-susceptible wild-type plant. The acd1, acd2, and cpr5 mutants which, like the ssi2 mutant, accumulate elevated SA levels, constitutively express the PR-1 gene, spontaneously develop lesions containing dead cells, and are dwarfs, are, however, fully susceptible to CMV. Our results suggest that dwarfing, cell death, and constitutive activation of SA signaling are not important for the ssi2-conferred enhanced resistance to CMV. However, the sfd1 and sfd4 mutations, which affect lipid metabolism, suppress the ssi2-conferred enhanced resistance to CMV, thus implicating a lipid or lipids in the ssi2-conferred resistance to CMV. Interestingly, the ssi2-conferred resistance to CMV was compromised in the ssi2 eds5 plant, suggesting the involvement of an SA-independent, EDS5-dependent mechanism in the ssi2-conferred resistance to CMV.
Phytopathology | 2006
Hideki Takahashi; Takeaki Ishihara; Shu Hase; Ayaka Chiba; Kazuhiro Nakaho; Tsutomu Arie; Tohru Teraoka; Michiaki Iwata; Taneaki Tugane; Daisuke Shibata; Shigehito Takenaka
ABSTRACT The biocontrol agent Pythium oligandrum produces glycoprotein elicitor in the cell wall fraction, designated CWP, and induces resistance to a broad range of pathogens. To understand the mechanism of CWP-induced resistance to pathogens, gene expression at the early stage of CWP treatment in tomato roots was analyzed using a cDNA array. At 4 h after CWP treatment, 144 genes were up-regulated and 99 genes were down-regulated. In the 144 up-regulated genes, nine genes exhibited about eightfold increased expression. Analysis of the response of these nine genes to three commercial plant activators indicated that a high level of one gene, beta-cyanoalanine synthase gene (LeCAS) encoding hydrogen cyanide (HCN) detoxification enzyme, was stably induced in tomato roots by such treatment. However, expression of LeCAS was not significantly induced in tomato roots at 4 h by abiotic stresses, whereas only a very low level of induction of such expression by cold stress was observed. This LeCAS expression was also induced after exogenous treatment with a low level of 1-amino-cyclopropane-1-carboxylate as the precursor of ethylene, but not with either salicylic acid or methyl jas-monate. The induction of LeCAS expression in CWP-treated and plant activator-treated roots is likely to be caused by the detoxification of HCN during ethylene production. Transient activation of LeCAS expression caused by ethylene production in tomato roots may be a general phenomenon in fungal elicitor-induced and synthetic plant activator-induced resistance. LeCAS seems to be useful for screening possible novel plant activators for plant protection against pathogens.
Plant Biology | 2008
Takeaki Ishihara; Ken-Taro Sekine; Shu Hase; Yoshinori Kanayama; S. Seo; Y. Ohashi; Tomonobu Kusano; Daisuke Shibata; Jyoti Shah; Hideki Takahashi
The Arabidopsis thaliana ENHANCED DISEASE SUSCEPTIBILITY 5 gene (EDS5) is required for salicylic acid (SA) synthesis in pathogen-challenged plants. SA and EDS5 have an important role in the Arabidopsis RCY1 gene-conferred resistance against the yellow strain of Cucumber mosaic virus [CMV(Y)], a Bromoviridae, and HRT-conferred resistance against the Tombusviridae, Turnip crinkle virus (TCV). EDS5 expression and SA accumulation are induced in response to CMV(Y) inoculation in the RCY1-bearing ecotype C24. To further discern the involvement of EDS5 in Arabidopsis defence against viruses, we overexpressed the EDS5 transcript from the constitutively expressed Cauliflower mosaic virus 35S gene promoter in ecotype C24. In comparison to the non-transgenic control, the basal level of salicylic acid (SA) was twofold higher in the 35S:EDS5 plant. Furthermore, viral spread and the size of the hypersensitive response associated necrotic local lesions (NLL) were more highly restricted in CMV(Y)-inoculated 35S:EDS5 than in the non-transgenic plant. The heightened restriction of CMV(Y) spread was paralleled by more rapid induction of the pathogenesis-related gene, PR-1, in the CMV(Y)-inoculated 35S:EDS5 plant. The 35S:EDS5 plant also had heightened resistance to the virulent CMV strain, CMV(B2), and TCV. These results suggest that, in addition to R gene-mediated gene-for-gene resistance, EDS5 is also important for basal resistance to viruses. However, while expression of the Pseudomonas putida nahG gene, which encodes the SA-degrading salicylate hydroxylase, completely suppressed 35S:EDS5-conferred resistance against CMV(Y) and TCV, it only partially compromised resistance against CMV(B2), indicating that SA-dependent and -independent mechanisms are associated with 35S:EDS5-conferred resistance against viruses.
Phytopathology | 2006
Tatsuya Kon; Sri H. Hidayat; Shu Hase; Hideki Takahashi; M. Ikegami
ABSTRACT Two begomoviruses (Java virus-1 and Java virus-2), two satellite DNAs (DNAbeta01 and DNAbeta02), and a recombinant DNA (recDNA) were cloned from a single tomato plant from Indonesia with leaf curl symptoms, and the role of these satellite DNAs in the etiology of begomovirus disease was investigated. The genome organizations of the two viruses were similar to those of other Old World monopartite begomoviruses. Comparison of the sequences with other begomoviruses revealed that Java virus-1 was a newly described virus for which the name Tomato leaf curl Java virus (ToLCJAV) is proposed. Java virus-2 was a strain of Ageratum yellow vein virus (AYVV) (AYVV-[Java]). ToLCJAV or AYVV-[Java] alone did not induce leaf curl symptoms in tomato plants. However, in the presence of DNAbeta02, both ToLCJAV and AYVV-[Java] induced leaf curl symptoms in tomato plants. In the presence of DNAbeta01, these viruses induced mild leaf curl symptoms in tomato plants. The recDNA had a chimeric sequence, which arose from recombination among ToLCJAV, AYVV-[Java], DNAbeta01, and DNAbeta02; it was replicated only in the presence of AYVV-[Java] in tomato plants.
Plant Molecular Biology | 2006
Ken-Taro Sekine; Takeaki Ishihara; Shu Hase; Tomonobu Kusano; Jyoti Shah; Hideki Takahashi
Resistance to an yellow strain of Cucumber mosaic virus [CMV(Y)] in Arabidopsis thaliana ecotype C24 is conferred by the CC-NBS-LRR type R gene, RCY1. RCY1-conferred resistance is accompanied by a hypersensitive response (HR), which is characterized by the development of necrotic local lesion (NLL) at the site of infection that restricts viral spread. To further characterize the role of RCY1 in NLL formation we have identified six recessive CMV(Y)-susceptible rcy1 mutants, four of which contain single amino acid substitutions in RCY1: rcy1-2 contains a D to N substitution in the CC domain, rcy1-3 and rcy1-4 contain R to K and E to K substitutions, respectively, in the LRR domain, and rcy1-6 contains a W to C substitution in the NBS domain. The rcy1-5 and rcy1-7 contain nonsense mutations in the LRR and NBS domains, respectively. Although the virus systemically spread in all six rcy1 mutants, HR-associated cell death was differentially induced in these mutants. In comparison to the wild type C24 plant, HR was not observed in the CMV(Y)-inoculated leaves of the rcy1-3, rcy1-5, rcy1-6 and rcy1-7 mutants. In contrast, delayed NLL development was observed in the virus inoculated leaves of the rcy1-2 and rcy1-4 mutants. In addition, necrosis accompanied by elevated accumulation of PR gene transcript also appeared in the non-inoculated leaves of the rcy1-2 and rcy1-4 mutants. Trans-complementation was observed between the rcy1-2 and rcy1-4 alleles; in F1 plants derived from a cross between rcy1-2 and rcy1−4, HR associated cell death was accelerated and systemic spread of the virus was partially suppressed than in the homozygous rcy1-2 and rcy1-4 plants. Our results suggest that the CC, NBS and LRR domains of RCY1 are required for restriction of virus spread but differentially impact the induction of HR-like cell death. Furthermore, these results also predict inter-molecular interaction involving RCY1 in Arabidopsis resistance to CMV(Y).
Plant and Cell Physiology | 2009
Yoko Kawamura; Shigehito Takenaka; Shu Hase; Mayumi Kubota; Yuki Ichinose; Yoshinori Kanayama; Kazuhiro Nakaho; Daniel F. Klessig; Hideki Takahashi
The cell wall protein fraction (CWP) is purified from the non-pathogenic biocontrol agent Pythium oligandrum and is composed of two glycoproteins (POD-1 and POD-2), which are structurally similar to class III elicitins. In tomato plants treated with CWP, jasmonic acid (JA)- and ethylene (ET)-dependent signaling pathways are activated, and resistance to Ralstonia solanaceraum is enhanced. To dissect CWP-induced defense mechanisms, we investigated defense gene expression and resistance to bacterial pathogens in Arabidopsis thaliana ecotype Col-0 treated with CWP. When the leaves of Col-0 were infiltrated with CWP, neither visible necrosis nor salicylic acid (SA)-responsive gene (PR-1 and PR-5) expression was induced. In contrast, JA-responsive gene (PDF1.2 and JR2) expression was up-regulated and the resistance to R. solanaceraum and Pseudomonas syringae pv. tomato DC3000 was enhanced in response to CWP. Such CWP-induced defense responses were completely compromised in CWP-treated coi1-1 and jar1-1 mutants with an impaired JA signaling pathway. The induction of defense-related gene expression after CWP treatment was partially compromised in ET-insensitive ein2-1 mutants, but not in SA signaling mutants or nahG transgenic plants. Global gene expression analysis using cDNA array also suggested that several other JA- and ET-responsive genes, but not SA-responsive genes, were up-regulated in response to CWP. Further analysis of CWP-induced defense responses using another eight mutants with impaired defense signaling pathways indicated that, interestingly, the induction of JA-responsive gene expression and enhanced resistance to two bacterial pathogens in response to CWP were completely compromised in rar1-1, rar1-21, sgt1a-1, sgt1b (edm1) and npr1-1 mutants. Thus, the CWP-induced defense system appears to be regulated by JA-mediated and SGT1-, RAR1- and NPR1-dependent signaling pathways.
Molecular Plant-microbe Interactions | 2008
Ken Taro Sekine; Sayaka Kawakami; Shu Hase; Mayumi Kubota; Yuki Ichinose; Jyoti Shah; Hong Gu Kang; Daniel F. Klessig; Hideki Takahashi
A coiled coil-nucleotide binding site-leucine rich repeat-type resistance gene, RCY1, confers resistance to a yellow strain of Cucumber mosaic virus, CMV(Y), in Arabidopsis thaliana ecotype C24. Resistance to CMV(Y) in C24 is accompanied by a hypersensitive response (HR) that is characterized by the development of necrotic local lesions at the primary infection sites. To further study the HR and resistance to CMV(Y) in ecotype Col-0, which is susceptible to CMV(Y), Col-0 were transformed with RCY1. Systemic spread of CMV(Y) was completely suppressed in RCY1-transformed Col-0 (Col::pRCY1 lines 2 to 6), whereas virulent strain CMV(B2) spread and multiplied systemically in these transgenic lines similar to that in wild-type Col-0. Interestingly, the resistant phenotype of Col::pRCY1 varied among the lines. In lines 3 and 6, in which levels of RCY1 transcript were similar to that in wild-type C24, the HR and resistance to CMV(Y) was induced. Line 4, which expresses moderately elevated levels of RCY1 transcript, exhibited moderately enhanced resistance compared with that in C24 or line 3. In contrast, lines 2 and 5, which highly overexpress the RCY1 gene, did not exhibit either visible lesions or a micro-HR on the inoculated leaves. Moreover, virus coat protein was not detected in either inoculated or noninoculated upper leaves of these two lines, suggesting that extreme resistance (ER) to CMV(Y) was induced by high levels of expression of RCY1. Furthermore, in transgenic lines expressing hemagglutinin (HA) epitope-tagged RCY1 (Col::pRCY1-HA), high levels of accumulation of RCY1-HA protein were also correlated with the ER phenotype. Global gene expression analysis in line 2, which highly overexpresses RCY1, indicated that expression of several defense-related genes were constitutively elevated compared with wild-type Col-0. Despite this, line 2 did not have enhanced resistance to other avirulent and virulent pathogens. Take together, constitutive accumulation of high levels of RCY1 protein appears to regulate the strength of RCY1-conferred resistance in a gene-for-gene manner and implies that ER and HR-associated resistance differ only in the strength of resistance.
Journal of General Plant Pathology | 2011
Hideki Takahashi; Hiroyuki Sekiguchi; Toyoaki Ito; Masashi Sasahara; Noriko Hatanaka; Atsushi Ohba; Shu Hase; Sugihiro Ando; Hiroshi Hasegawa; Shigehito Takenaka
Plants harbor microorganisms that are thought to stimulate plant defense systems or promote plant growth. Individual species in these intercellular microbial communities are often not sufficiently abundant to be easily described, although some endophytic microorganisms amenable to culture have been characterized. To better understand the microbial population of plants, we collected intercellular fluid (IF) from leaf blades and sheaths of rice and subsequently isolated DNA from the IF. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S and 18S rDNA fragments amplified from IF DNA by PCR indicated that these band patterns were distinguishable from those of a leaf surface-wash fluid (SF). Analysis of a set of rDNA fragments amplified from IF DNA of rice with different genotypes, paddies or growth stages for the primary survey of overall microbial community in the IF suggested that this approach is suitable for analyzing microbial diversity in the IF from various plant samples. Actually, comparative analysis of amplified rDNA fragments of rice and other five plant species indicated that the microbial diversity in IF is likely to vary substantially among plant species. We can also use sequence analysis of 16S rDNA fragments amplified from rice IF DNA to identify species including unculturable bacteria and proteobacteria and Xanthomonas and 18S rDNA fragments to identify Tilletiaria anomala, Tilletia iowensis, Ustilago maydis and unculturable eukaryotes. Thus, IF DNA analysis seems to be a good tool to further study the microbial ecology of plants.
Plant Production Science | 2007
Hajime Watanabe; Shu Hase; Masahiko Saigusa
Abstract Improvement of early seedling growth, such as seedling emergence and vigor is one of the most important agronomic traits in direct seeding rice cultivation. The effects of two plant growth regulators (PGRs), gibberellic acid (GA3) and ethephon (ET), on seedling growth under flooded soil conditions at different temperatures and water depths were investigated. The PGRs were applied during the seed soaking process. A single treatment with GA3 or ET increased seedling growth. However, combined application of GA3 and ET was more effective than that of GA3 or ET alone in many cases at both growing temperatures (15 and 20ºC). The growth of different organs in the rice seedlings, such as the coleoptiles, first leaves, and second leaves was also increased by PGR treatment. The nitrogen concentration of the shoot and the ratio of shoot dry weight to shoot length did not differ significantly among the treatments. The results of our study show that rice seedling growth in direct seeding cultivation may be improved by treatment with GA3 and ET in combination.