Shu-ou Shan
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shu-ou Shan.
Nature | 2004
Pascal F. Egea; Shu-ou Shan; Johanna Napetschnig; David F. Savage; Peter Walter; Robert M. Stroud
Signal sequences target proteins for secretion from cells or for integration into cell membranes. As nascent proteins emerge from the ribosome, signal sequences are recognized by the signal recognition particle (SRP), which subsequently associates with its receptor (SR). In this complex, the SRP and SR stimulate each others GTPase activity, and GTP hydrolysis ensures unidirectional targeting of cargo through a translocation pore in the membrane. To define the mechanism of reciprocal activation, we determined the 1.9 Å structure of the complex formed between these two GTPases. The two partners form a quasi-two-fold symmetrical heterodimer. Biochemical analysis supports the importance of the extensive interaction surface. Complex formation aligns the two GTP molecules in a symmetrical, composite active site, and the 3′OH groups are essential for association, reciprocal activation and catalysis. This unique circle of twinned interactions is severed twice on hydrolysis, leading to complex dissociation after cargo delivery.
Science | 1996
Shu-ou Shan; Stewart N. Loh; Daniel Herschlag
Low-barrier or short, strong hydrogen bonds have been proposed to contribute 10 to 20 kilocalories per mole to transition-state stabilization in enzymatic catalysis. The proposal invokes a large increase in hydrogen bond energy when the pKa values of the donor and acceptor (where Ka is the acid constant) become matched in the transition state (ΔpKa = 0). This hypothesis was tested by investigating the energetics of hydrogen bonds as a function of ΔpKa for homologous series of compounds under nonaqueous conditions that are conducive to the formation of low-barrier hydrogen bonds. In all cases, there was a linear correlation between the increase in hydrogen-bond energy and the decrease in ΔpKa, as expected from simple electrostatic effects. However, no additional energetic contribution to the hydrogen bond was observed at ΔpKa = 0. These results and those of other model studies suggest alternative mechanisms by which hydrogen bonds can contribute to enzymatic catalysis, in accord with conventional electrostatic considerations.
Annual Review of Biochemistry | 2013
David Akopian; Kuang Shen; Xin Zhang; Shu-ou Shan
The signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP·SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers in which important questions remain to be addressed.
Nature | 2009
Nathan W. Pierce; Gary Kleiger; Shu-ou Shan; Raymond J. Deshaies
The pathway by which ubiquitin chains are generated on substrate through a cascade of enzymes consisting of an E1, E2 and E3 remains unclear. Multiple distinct models involving chain assembly on E2 or substrate have been proposed. However, the speed and complexity of the reaction have precluded direct experimental tests to distinguish between potential pathways. Here we introduce new theoretical and experimental methodologies to address both limitations. A quantitative framework based on product distribution predicts that the really interesting new gene (RING) E3 enzymes SCFCdc4 and SCFβ-TrCP work with the E2 Cdc34 to build polyubiquitin chains on substrates by sequential transfers of single ubiquitins. Measurements with millisecond time resolution directly demonstrate that substrate polyubiquitylation proceeds sequentially. Our results present an unprecedented glimpse into the mechanism of RING ubiquitin ligases and illuminate the quantitative parameters that underlie the rate and pattern of ubiquitin chain assembly.
FEBS Letters | 2005
Shu-ou Shan; Peter Walter
The signal recognition particle (SRP) mediates the co‐translational targeting of nascent proteins to the eukaryotic endoplasmic reticulum membrane, or the bacterial plasma membrane. During this process, two GTPases, one in the SRP and one in the SRP receptor (SR), form a complex in which both proteins reciprocally activate the GTPase reaction of one another. The recent crystal structures of the T. aquaticus SRP · SR complex show that the two GTPases associate via an unusually extensive and highly cooperative interaction surface, and form a composite active site at the interface. GTPase activation proceeds through a unique mechanism, stimulated by both interactions between the twinned GTP molecules across the dimer interface and by conformational rearrangements that position catalytic residues in each active site with respect to the bound substrates. Distinct classes of mutations have been isolated that inhibit specific stages during SRP–SR complex formation and activation, suggesting discrete conformational stages during formation of the active SRP · SR complex. Each stage provides a potential control point in the targeting reaction at which regulation by additional components can be exerted, thus ensuring the binding and release of cargo at the appropriate time.
Science | 2011
Sandro F. Ataide; Nikolaus Schmitz; Kuang Shen; Ailong Ke; Shu-ou Shan; Jennifer A. Doudna; Nenad Ban
Guanine triphosphate controls changes in the signal recognition particle that facilitate transfer of the signal sequence to the translocon. Cotranslational targeting of membrane and secretory proteins is mediated by the universally conserved signal recognition particle (SRP). Together with its receptor (SR), SRP mediates the guanine triphosphate (GTP)–dependent delivery of translating ribosomes bearing signal sequences to translocons on the target membrane. Here, we present the crystal structure of the SRP:SR complex at 3.9 angstrom resolution and biochemical data revealing that the activated SRP:SR guanine triphosphatase (GTPase) complex binds the distal end of the SRP hairpin RNA where GTP hydrolysis is stimulated. Combined with previous findings, these results suggest that the SRP:SR GTPase complex initially assembles at the tetraloop end of the SRP RNA and then relocalizes to the opposite end of the RNA. This rearrangement provides a mechanism for coupling GTP hydrolysis to the handover of cargo to the translocon.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Xin Zhang; Christiane Schaffitzel; Nenad Ban; Shu-ou Shan
The “GTPase switch” paradigm, in which a GTPase switches between an active, GTP-bound state and an inactive, GDP-bound state through the recruitment of nucleotide exchange factors (GEFs) or GTPase activating proteins (GAPs), has been used to interpret the regulatory mechanism of many GTPases. A notable exception to this paradigm is provided by two GTPases in the signal recognition particle (SRP) and the SRP receptor (SR) that control the co-translational targeting of proteins to cellular membranes. Instead of the classical “GTPase switch,” both the SRP and SR undergo a series of discrete conformational rearrangements during their interaction with one another, culminating in their reciprocal GTPase activation. Here, we show that this series of rearrangements during SRP-SR binding and activation provide important control points to drive and regulate protein targeting. Using real-time fluorescence, we showed that the cargo for SRP—ribosomes translating nascent polypeptides with signal sequences—accelerates SRP·SR complex assembly over 100-fold, thereby driving rapid delivery of cargo to the membrane. A series of subsequent rearrangements in the SRP·SR GTPase complex provide important driving forces to unload the cargo during late stages of protein targeting. Further, the cargo delays GTPase activation in the SRP·SR complex by 8–12 fold, creating an important time window that could further improve the efficiency and fidelity of protein targeting. Thus, the SRP and SR GTPases, without recruiting external regulatory factors, constitute a self-sufficient system that provides exquisite spatial and temporal control of a complex cellular process.
PLOS Biology | 2004
Shu-ou Shan; Robert M. Stroud; Peter Walter
The signal recognition particle (SRP) mediates the cotranslational targeting of nascent proteins to the eukaryotic endoplasmic reticulum membrane or the bacterial plasma membrane. During this process, two GTPases, one in SRP and one in the SRP receptor (named Ffh and FtsY in bacteria, respectively), form a complex in which both proteins reciprocally activate the GTPase reaction of one another. Here, we explore by site-directed mutagenesis the role of 45 conserved surface residues in the Ffh-FtsY interaction. Mutations of a large number of residues at the interface impair complex formation, supporting the importance of an extensive interaction surface. Surprisingly, even after a stable complex is formed, single mutations in FtsY can block the activation of GTP hydrolysis in both active sites. Thus, activation requires conformational changes across the interface that coordinate the positioning of catalytic residues in both GTPase sites. A distinct class of mutants exhibits half-site reactivity and thus allows us to further uncouple the activation of individual GTPases. Our dissection of the activation process suggests discrete conformational stages during formation of the active SRP•SRP receptor complex. Each stage provides a potential control point in the targeting reaction at which regulation by additional components can be exerted, thus ensuring the binding and release of cargo at the appropriate time.
Science | 2010
Xin Zhang; Rumana Rashid; Kai Wang; Shu-ou Shan
Target Acquisition The proper localization of proteins to the correct intracellular destinations is essential for the structure and function of all cells. Most membrane and secretory proteins are targeted to membranes by virtue of a signal sequence that is recognized by signal recognition particle (SRP) as the protein is being translated, forming a complex that docks with target membranes bearing the SRP receptor. Now, Zhang et al. (p. 757) have found, using cell-free bacterial extracts, that the initial binding of cargo by SRP is not sufficient to discriminate against all the incorrect cargos. Instead, a series of fidelity checkpoints during subsequent steps of the protein-targeting and translocation pathway help reject incorrect cargos. Protein cargo is monitored at several points during membrane translocation to improve targeting fidelity. Proper protein localization is essential for all cells. However, the precise mechanism by which high fidelity is achieved is not well understood for any protein-targeting pathway. To address this fundamental question, we investigated the signal recognition particle (SRP) pathway in Escherichia coli, which delivers proteins to the bacterial inner membrane through recognition of signal sequences on cargo proteins. Fidelity was thought to arise from the inability of SRP to bind strongly to incorrect cargos. Using biophysical assays, we found that incorrect cargos were also rejected through a series of checkpoints during subsequent steps of targeting. Thus, high fidelity of substrate selection is achieved through the cumulative effect of multiple checkpoints; this principle may be generally applicable to other pathways involving selective signal recognition.
Molecular & Cellular Proteomics | 2012
Dawei Zhang; Michael J. Sweredoski; Robert L. Graham; Sonja Hess; Shu-ou Shan
The signal recognition particle (SRP), which mediates cotranslational protein targeting to cellular membranes, is universally conserved and essential for bacterial and mammalian cells. However, the current understanding of the role of SRP in cell physiology and pathology is still poor, and the reasons behind its essential role in cell survival remain unclear. Here, we systematically analyzed the consequences of SRP loss in E. coli using time-resolved quantitative proteomic analyses. A series of snapshots of the steady-state and newly synthesized proteome unveiled three stages of cellular responses to SRP depletion, and demonstrated essential roles of SRP in metabolism, membrane potential, and protein and energy homeostasis in both the membrane and cytoplasm. We also identified a group of periplasmic proteins, including key molecular chaperones, whose localization was impaired by the loss of SRP; this and additional results showed that SRP is crucial for protein homeostasis in the bacterial envelope. These results reveal the extensive roles that SRP plays in bacterial physiology, emphasize the importance of proper membrane protein biogenesis, and demonstrate the ability of time-resolved quantitative proteomic analysis to provide new biological insights.