Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shu-Yu Lin is active.

Publication


Featured researches published by Shu-Yu Lin.


The EMBO Journal | 2011

Atg1‐mediated myosin II activation regulates autophagosome formation during starvation‐induced autophagy

Hong-Wen Tang; Yu-Bao Wang; Shiu-Lan Wang; Mei-Hsuan Wu; Shu-Yu Lin; Guang-Chao Chen

Autophagy is a membrane‐mediated degradation process of macromolecule recycling. Although the formation of double‐membrane degradation vesicles (autophagosomes) is known to have a central role in autophagy, the mechanism underlying this process remains elusive. The serine/threonine kinase Atg1 has a key role in the induction of autophagy. In this study, we show that overexpression of Drosophila Atg1 promotes the phosphorylation‐dependent activation of the actin‐associated motor protein myosin II. A novel myosin light chain kinase (MLCK)‐like protein, Spaghetti‐squash activator (Sqa), was identified as a link between Atg1 and actomyosin activation. Sqa interacts with Atg1 through its kinase domain and is a substrate of Atg1. Significantly, myosin II inhibition or depletion of Sqa compromised the formation of autophagosomes under starvation conditions. In mammalian cells, we found that the Sqa mammalian homologue zipper‐interacting protein kinase (ZIPK) and myosin II had a critical role in the regulation of starvation‐induced autophagy and mammalian Atg9 (mAtg9) trafficking when cells were deprived of nutrients. Our findings provide evidence of a link between Atg1 and the control of Atg9‐mediated autophagosome formation through the myosin II motor protein.


Molecular Cell | 2011

Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation.

Che Chang Chang; Mandar T. Naik; Yen Sung Huang; Jen Chong Jeng; Pei Hsin Liao; Hong Yi Kuo; Chun Chen Ho; Yung Lin Hsieh; Chiou Hong Lin; Nai Jia Huang; Nandita M. Naik; Camy C.H. Kung; Shu-Yu Lin; Ruey-Hwa Chen; Kun Sang Chang; Tai Huang Huang; Hsiu-Ming Shih

Small ubiquitin-like modifier (SUMO) conjugation and interaction are increasingly associated with various cellular processes. However, little is known about the cellular signaling mechanisms that regulate proteins for distinct SUMO paralog conjugation and interactions. Using the transcriptional coregulator Daxx as a model, we show that SUMO paralog-selective binding and conjugation are regulated by phosphorylation of the Daxx SUMO-interacting motif (SIM). NMR structural studies show that Daxx (732)E-I-I-V-L-S-D-S-D(740) is a bona fide SIM that binds to SUMO-1 in a parallel orientation. Daxx-SIM is phosphorylated by CK2 kinase at residues S737 and S739. Phosphorylation promotes Daxx-SIM binding affinity toward SUMO-1 over SUMO-2/3, causing Daxx preference for SUMO-1 conjugation and interaction with SUMO-1-modified factors. Furthermore, Daxx-SIM phosphorylation enhances Daxx to sensitize stress-induced cell apoptosis via antiapoptotic gene repression. Our findings provide structural insights into the Daxx-SIM:SUMO-1 complex, a model of SIM phosphorylation-enhanced SUMO paralog-selective modification and interaction, and phosphorylation-regulated Daxx function in apoptosis.


Molecular & Cellular Proteomics | 2009

Phosphoproteomics of Klebsiella pneumoniae NTUH-K2044 Reveals a Tight Link between Tyrosine Phosphorylation and Virulence

Miao-Hsia Lin; Tung-Li Hsu; Shu-Yu Lin; Yi-Jiun Pan; Jia-Tsrong Jan; Jin-Town Wang; Kay-Hooi Khoo; Shih-Hsiung Wu

Encapsulated Klebsiella pneumoniae is the predominant causative agent of pyogenic liver abscess, an emerging infectious disease that often complicates metastatic meningitis or endophthalmitis. The capsular polysaccharide on K. pneumoniae surface was determined as the key to virulence. Although the regulation of capsular polysaccharide biosynthesis is largely unclear, it was found that protein-tyrosine kinases and phosphatases are involved. Therefore, the identification and characterization of such kinases, phosphatases, and their substrates would advance our knowledge of the underlying mechanism in capsule formation and could contribute to the development of new therapeutic strategies. Here, we analyzed the phosphoproteome of K. pneumoniae NTUH-K2044 with a shotgun approach and identified 117 unique phosphopeptides along with 93 in vivo phosphorylated sites corresponding to 81 proteins. Interestingly, three of the identified tyrosine phosphorylated proteins, namely protein-tyrosine kinase (Wzc), phosphomannomutase (ManB), and undecaprenyl-phosphate glycosyltransferase (WcaJ), were found to be distributed in the cps locus and thus were speculated to be involved in the converging signal transduction of capsule biosynthesis. Consequently, we decided to focus on the lesser studied ManB and WcaJ for mutation analysis. The capsular polysaccharides of WcaJ mutant (WcaJY5F) were dramatically reduced quantitatively, and the LD50 increased by 200-fold in a mouse peritonitis model compared with the wild-type strain. However, the capsular polysaccharides of ManB mutant (ManBY26F) showed no difference in quantity, and the LD50 increased by merely 6-fold in mice test. Our study provided a clear trend that WcaJ tyrosine phosphorylation can regulate the biosynthesis of capsular polysaccharides and result in the pathogenicity of K. pneumoniae NTUH-K2044.


Molecular Cell | 2014

K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking

Wei Chien Yuan; Yu Ru Lee; Shu-Yu Lin; Li Ying Chang; Yen Pei Tan; Chin Chun Hung; Jean Cheng Kuo; Cheng Hsin Liu; Mei Yao Lin; Ming Xu; Zhijian J. Chen; Ruey-Hwa Chen

Ubiquitin chains are formed as structurally distinct polymers via different linkages, and several chain types including K33-linkage remain uncharacterized. Here, we describe a role for K33-polyubiquitination in protein trafficking. We show that the Cullin 3 (Cul3) substrate adaptor KLHL20 is localized to the trans-Golgi network (TGN) and is important for post-Golgi trafficking by promoting the biogenesis of TGN-derived transport carriers. The Cul3-KLHL20 ubiquitin E3 ligase catalyzes a nondegradable, K33-linked polyubiquitination on coronin 7 (Crn7), which facilitates Crn7 targeting to TGN through a ubiquitin-dependent interaction with Eps15. Blockage of K33-chain formation, Crn7 ubiquitination, or disruption of Crn7-Eps15 interaction impairs TGN-pool F-actin assembly, a process essential for generating transport carriers. Enforced targeting of Crn7 to TGN bypasses the requirement of K33-ubiquitination for TGN-pool F-actin assembly and post-Golgi trafficking. Our study reveals a role of KLHL20-mediated K33-ubiquitination of Crn7 in post-Golgi transport and identifies a cellular recognition mechanism for this ubiquitin chain type.


PLOS Pathogens | 2014

An Invertebrate Warburg Effect: A Shrimp Virus Achieves Successful Replication by Altering the Host Metabolome via the PI3K-Akt-mTOR Pathway

Mei-An Su; Yun-Tzu Huang; I-Tung Chen; Der-Yen Lee; Yun-Chieh Hsieh; Chun-Yuan Li; Tze Hann Ng; Suh-Yuen Liang; Shu-Yu Lin; Shiao-Wei Huang; Yi-An Chiang; Hon-Tsen Yu; Kay-Hooi Khoo; Geen-Dong Chang; Chu Fang Lo; Han Ching Wang

In this study, we used a systems biology approach to investigate changes in the proteome and metabolome of shrimp hemocytes infected by the invertebrate virus WSSV (white spot syndrome virus) at the viral genome replication stage (12 hpi) and the late stage (24 hpi). At 12 hpi, but not at 24 hpi, there was significant up-regulation of the markers of several metabolic pathways associated with the vertebrate Warburg effect (or aerobic glycolysis), including glycolysis, the pentose phosphate pathway, nucleotide biosynthesis, glutaminolysis and amino acid biosynthesis. We show that the PI3K-Akt-mTOR pathway was of central importance in triggering this WSSV-induced Warburg effect. Although dsRNA silencing of the mTORC1 activator Rheb had only a relatively minor impact on WSSV replication, in vivo chemical inhibition of Akt, mTORC1 and mTORC2 suppressed the WSSV-induced Warburg effect and reduced both WSSV gene expression and viral genome replication. When the Warburg effect was suppressed by pretreatment with the mTOR inhibitor Torin 1, even the subsequent up-regulation of the TCA cycle was insufficient to satisfy the viruss requirements for energy and macromolecular precursors. The WSSV-induced Warburg effect therefore appears to be essential for successful viral replication.


Journal of Proteome Research | 2008

Precise mapping of increased sialylation pattern and the expression of acute phase proteins accompanying murine tumor progression in BALB/c mouse by integrated sera proteomics and glycomics.

Shu-Yu Lin; Yi-Yun Chen; Yao-Yun Fan; Chia-Wei Lin; Shui-Tsung Chen; Andrew H.-J. Wang; Kay-Hooi Khoo

Inbred BALB/c mouse implanted with murine tumors serves as an attractive model system for the studies of cancer biology in immuno-competent individuals. It is anticipated that tumor progression would induce notable pathophysiological consequences, some of which manifested as alteration in serum proteomic and glycomic profiles. Similar to sera derived from human cancer patients and immuno-compromised mice bearing human tumors, we show in this work that BALB/c mice of the same genetic background but bearing two distinct tumor origins both exhibited elevated expression levels of acute phase proteins including haptoglobin and serum amyloid P protein, in response to tumor progression. Such common traits are generally not informative nor qualifying as biomarkers. Additional mass spectrometry (MS)-based glycomic mapping nevertheless detected distinctive changes of sialylation pattern on the complex type N-glycans. MALDI MS/MS sequencing afforded a facile but definitive identification of an increase in internal Neu5Gcalpha2-6 sialylation on the GlcNAc of the Neu5Gc2-3Gal1-3GlcNAc terminal sequence as a common feature whereas a substitution of Neu5Gc by Neu5Ac was found to be induced by colonic but not breast tumor. A more pronounced change was similarly detected on N-glycans derived from ascitic fluids representing late tumor progression stages. We next demonstrated that such distinct change in glycotope expression can be localized to a particular protein carrier by LC-MS/MS analysis of glycopeptides. Serotransferrin was identified as one such abundant serum glycoprotein, which changed significantly not in protein expression level but in terminal glycosylation pattern.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Quantitative apical membrane proteomics reveals vasopressin-induced actin dynamics in collecting duct cells

Chin-San Loo; Cheng-Wei Chen; Po-Jen Wang; Pei-Yu Chen; Shu-Yu Lin; Kay-Hooi Khoo; Robert A. Fenton; Mark A. Knepper; Ming-Jiun Yu

Significance Vasopressin is a peptide hormone that regulates renal water excretion to maintain whole-body water balance. It does so by regulating trafficking of a molecular water channel, aquaporin-2, to and from the plasma membrane of collecting duct cells. This study uses two state-of-the-art methods (protein mass spectrometry of affinity-isolated apical plasma membrane proteins and live-cell imaging of actin dynamics) to uncover the central role of the actin dynamics in the trafficking of aquaporin-2–containing vesicles. The results coupled with prior data produce a model in which vasopressin signaling triggers actin accumulation near the tight junction and concomitant depletion of actin from the central regions of the apical plasma membrane, thereby providing access of aquaporin-2–containing vesicles to the apical plasma membrane. In kidney collecting duct cells, filamentous actin (F-actin) depolymerization is a critical step in vasopressin-induced trafficking of aquaporin-2 to the apical plasma membrane. However, the molecular components of this response are largely unknown. Using stable isotope-based quantitative protein mass spectrometry and surface biotinylation, we identified 100 proteins that showed significant abundance changes in the apical plasma membrane of mouse cortical collecting duct cells in response to vasopressin. Fourteen of these proteins are involved in actin cytoskeleton regulation, including actin itself, 10 actin-associated proteins, and 3 regulatory proteins. Identified were two integral membrane proteins (Clmn, Nckap1) and one actin-binding protein (Mpp5) that link F-actin to the plasma membrane, five F-actin end-binding proteins (Arpc2, Arpc4, Gsn, Scin, and Capzb) involved in F-actin reorganization, and two actin adaptor proteins (Dbn1, Lasp1) that regulate actin cytoskeleton organization. There were also protease (Capn1), protein kinase (Cdc42bpb), and Rho guanine nucleotide exchange factor 2 (Arhgef2) that mediate signal-induced F-actin changes. Based on these findings, we devised a live-cell imaging method to observe vasopressin-induced F-actin dynamics in polarized mouse cortical collecting duct cells. In response to vasopressin, F-actin gradually disappeared near the center of the apical plasma membrane while consolidating laterally near the tight junction. This F-actin peripheralization was blocked by calcium ion chelation. Vasopressin-induced apical aquaporin-2 trafficking and forskolin-induced water permeability increase were blocked by F-actin disruption. In conclusion, we identified a vasopressin-regulated actin network potentially responsible for vasopressin-induced apical F-actin dynamics that could explain regulation of apical aquaporin-2 trafficking and water permeability increase.


Journal of Proteome Research | 2008

Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy.

Ying-Che Chang; Shu-Yu Lin; Suh-Yuen Liang; Kuan-Ting Pan; Chi-Chi Chou; Chien-Hung Chen; Chung-Ling Liao; Kay-Hooi Khoo; Tzu-Ching Meng

Recent biochemical and genetic approaches have clearly defined the functional role of critical components in tyrosine phosphorylation-dependent signal transduction. These signaling modulators often exhibit evolutionarily conserved functions across various species. It has been proposed that if protein tyrosine kinases (PTKs), protein tyrosine phosphatases (PTPs), and thousands of their substrates could be identified and characterized, it would significantly advance our understanding of the underlying mechanisms that control animal development and physiological homeostasis. The fruit fly Drosophila melanogester has been used extensively as a model organism for investigating the developmental processes, but the state of its tyrosine phosphorylation is poorly characterized. In the current study, we used advanced mass spectrometry (MS)-based shotgun analyses to profile the tyrosine phosphoproteome of Drosophila S2 cells. Using immunoaffinity isolation of the phosphotyrosine (pTyr) subproteome from cells treated with pervanadate followed by enrichment of phosphopeptides, we identified 562 nonredundant pTyr sites in 245 proteins. Both this predefined pTyr proteome subset and the total cell lysates were then used as sample sources to identify potential substrates of dPTP61F, the smallest member in terms of amino acid number and molecular weight in the Drosophila PTP family and the ortholog of human PTP1B and T Cell-PTP, by substrate trapping. In total, 20 unique proteins were found to be specifically associated with the trapping mutant form of dPTP61F, eluted by vanadate (VO4(3-)), and identified by MS analyses. Among them, 16 potential substrates were confirmed as tyrosine phosphorylated proteins, including a receptor PTK PDGF/VEGF receptor, a cytosolic PTK Abl, and several components of SCAR/WAVE complex, which may work in coordination to control actin dynamics. Thus, our data suggest that dPTP61F plays a central role in counteracting PTK-mediated signaling pathways as well as in regulating actin reorganization and remodeling through tyrosine dephosphorylation of critical substrates in Drosophila cells.


Developmental and Comparative Immunology | 2015

To complete its replication cycle, a shrimp virus changes the population of long chain fatty acids during infection via the PI3K-Akt-mTOR-HIF1α pathway

Yun Chieh Hsieh; Yi Min Chen; Chun Yuan Li; Yu Han Chang; Suh Yuen Liang; Shu-Yu Lin; Chang Yi Lin; Sheng Hsiung Chang; Yi Jan Wang; Kay Hooi Khoo; Takashi Aoki; Han Ching Wang

White spot syndrome virus (WSSV), the causative agent of white spot disease (WSD), is a serious and aggressive shrimp viral pathogen with a worldwide distribution. At the genome replication stage (12 hpi), WSSV induces a metabolic rerouting known as the invertebrate Warburg effect, which boosts the availability of energy and biosynthetic building blocks in the host cell. Here we show that unlike the lipogenesis that is seen in cancer cells that are undergoing the Warburg effect, at 12 hpi, all of the long chain fatty acids (LCFAs) were significantly decreased in the stomach cells of WSSV-infected shrimp. By means of this non-selective WSSV-induced lipolysis, the LCFAs were apparently diverted into β-oxidation and used to replenish the TCA cycle. Conversely, at 24 hpi, when the Warburg effect had ceased, most of the LCFAs were significantly up-regulated and the composition was also significantly altered. In crayfish these changes were in a direction that appeared to favor the formation of WSSV virion particles. We also found that, at 24 hpi, but not at 12 hpi, the PI3K-Akt-mTOR-HIF1α pathway induced the expression of fatty acid synthase (FAS), an enzyme which catalyzes the conversion of acetyl-CoA into LCFAs. WSSV virion formation was impaired in the presence of the FAS inhibitor C75, although viral gene and viral DNA levels were unaffected. WSSV therefore appears to use the PI3K-Akt-mTOR pathway to induce lipid biosynthesis at 24 hpi in order to support viral morphogenesis.


PLOS ONE | 2011

Phosphorylation of the Zebrafish M6Ab at Serine 263 Contributes to Filopodium Formation in PC12 Cells and Neurite Outgrowth in Zebrafish Embryos

Kai Yun Huang; Gen Der Chen; Chia Hsiung Cheng; Kuan Ya Liao; Chin Chun Hung; Geen-Dong Chang; Pung-Pung Hwang; Shu-Yu Lin; Ming Chieh Tsai; Kay Hooi Khoo; Ming Ting Lee; Chang Jen Huang

Background Mammalian M6A, a member of the proteolipid protein (PLP/DM20) family expressed in neurons, was first isolated by expression cloning with a monoclonal antibody. Overexpression of M6A was shown to induce filopodium formation in neuronal cells; however, the underlying mechanism of is largely unknown. Possibly due to gene duplication, there are two M6A paralogs, M6Aa and M6Ab, in the zebrafish genome. In the present study, we used the zebrafish as a model system to investigate the role of zebrafish M6Ab in filopodium formation in PC12 cells and neurite outgrowth in zebrafish embryos. Methodology/Principal Findings We demonstrated that zebrafish M6Ab promoted extensive filopodium formation in NGF-treated PC12 cells, which is similar to the function of mammalian M6A. Phosphorylation at serine 263 of zebrafish M6Ab contributed to this induction. Transfection of the S263A mutant protein greatly reduced filopodium formation in PC12 cells. In zebrafish embryos, only S263D could induce neurite outgrowth. Conclusions/Significance Our results reveal that the phosphorylation status of zebrafish M6Ab at serine 263 is critical for its role in regulating filopodium formation and neurite outgrowth.

Collaboration


Dive into the Shu-Yu Lin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geen-Dong Chang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng-Wen Wu

National Yang-Ming University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Der-Yen Lee

National Taiwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge