Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siu-Hong Chan is active.

Publication


Featured researches published by Siu-Hong Chan.


Nucleic Acids Research | 2016

mRNA capping: biological functions and applications

Anand Ramanathan; G. Brett Robb; Siu-Hong Chan

The 5′ m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2′O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose.


Nucleic Acids Research | 2007

Discovery of natural nicking endonucleases Nb.BsrDI and Nb.BtsI and engineering of top-strand nicking variants from BsrDI and BtsI.

Shuang-yong Xu; Zhenyu Zhu; Penghua Zhang; Siu-Hong Chan; James C. Samuelson; Jian-ping Xiao; Debra Ingalls; Geoffrey G. Wilson

BsrDI and BtsI restriction endonucleases recognize and cleave double-strand DNA at the sequences GCAATG (2/0) and GCAGTG (2/0), respectively. We have purified and partially characterized these two enzymes, and analyzed the genes that encode them. BsrDI and BtsI are unusual in two respects: each cleaves DNA as a heterodimer of one large subunit (B subunit) and one small subunit (A subunit); and, in the absence of their small subunits, the large subunits behave as sequence-specific DNA nicking enzymes and only nick the bottom strand of the sequences at these respective positions: GCAATG (−/0) and GCAGTG (−/0). We refer to the single subunit, the bottom-strand nicking forms as ‘hemidimers’. Amino acid sequence comparisons reveal that BsrDI and BtsI belong to a family of restriction enzymes that possess two catalytic sites: a canonical PD-Xn-EXK and a second non-canonical PD-Xn-E-X12-QR. Interestingly, the other family members, which include BsrI (ACTGG 1/−1) and BsmI/Mva1269I (GAATGC 1/−1) are single polypeptide chains, i.e. monomers, rather than heterodimers. In BsrDI and BtsI, the two catalytic sites are found in two separate subunits. Site-directed mutagenesis confirmed that the canonical catalytic site located at the N-terminus of the large subunit is responsible for the bottom-strand cleavage, whereas the non-canonical catalytic site located in the small subunit is responsible for hydrolysis of the top strand. Top-strand specific nicking variants, Nt.BsrDI and Nt.BtsI, were successfully engineered by combining the catalytic-deficient B subunit with wild-type A subunit.


PLOS ONE | 2010

Cofactor requirement of HpyAV restriction endonuclease.

Siu-Hong Chan; Lars Opitz; Lauren Higgins; Diana O'loane; Shuang-yong Xu

Background Helicobacter pylori is the etiologic agent of common gastritis and a risk factor for gastric cancer. It is also one of the richest sources of Type II restriction-modification (R-M) systems in microorganisms. Principal Findings We have cloned, expressed and purified a new restriction endonuclease HpyAV from H. pylori strain 26695. We determined the HpyAV DNA recognition sequence and cleavage site as CCTTC 6/5. In addition, we found that HpyAV has a unique metal ion requirement: its cleavage activity is higher with transition metal ions than in Mg++. The special metal ion requirement of HpyAV can be attributed to the presence of a HNH catalytic site similar to ColE9 nuclease instead of the canonical PD-X-D/EXK catalytic site found in many other REases. Site-directed mutagenesis was carried out to verify the catalytic residues of HpyAV. Mutation of the conserved metal-binding Asn311 and His320 to alanine eliminated cleavage activity. HpyAV variant H295A displayed approximately 1% of wt activity. Conclusions/Significance Some HNH-type endonucleases have unique metal ion cofactor requirement for optimal activities. Homology modeling and site-directed mutagenesis confirmed that HpyAV is a member of the HNH nuclease family. The identification of catalytic residues in HpyAV paved the way for further engineering of the metal binding site. A survey of sequenced microbial genomes uncovered 10 putative R-M systems that show high sequence similarity to the HpyAV system, suggesting lateral transfer of a prototypic HpyAV-like R-M system among these microorganisms.


Nucleic Acids Research | 2010

Engineering Nt.BtsCI and Nb.BtsCI nicking enzymes and applications in generating long overhangs

Priscilla Hiu-Mei Too; Zhenyu Zhu; Siu-Hong Chan; Shuang-yong Xu

Type IIS restriction endonuclease BtsCI (GGATG 2/0) is a neoschizomer of FokI (GGATG 9/13) and cleaves closer to the recognition sequence. Although M.BtsCI shows 62% amino acid sequence identity to M.FokI, BtsCI and FokI restriction endonucleases do not share significant amino acid sequence similarity. BtsCI belongs to a group of Type IIS restriction endonucleases, BsmI, Mva1269I and BsrI, that carry two different catalytic sites in a single polypeptide. By inactivating one of the catalytic sites through mutagenesis, we have generated nicking variants of BtsCI that specifically nick the bottom-strand or the top-strand of the target site. By treating target DNA sequentially with the appropriate combinations of FokI and BtsCI nicking variants, we are able to generate long overhangs suitable for fluorescent labeling through end-filling or other techniques based on annealing of complementary DNA sequences.


Protein Expression and Purification | 2008

Expression and purification of BmrI restriction endonuclease and its N-terminal cleavage domain variants

Yongming Bao; Lauren Higgins; Penghua Zhang; Siu-Hong Chan; Sophie Laget; Suzanne Sweeney; Keith D. Lunnen; Shuang-yong Xu

BmrI (ACTGGG N5/N4) is one of the few metal-independent restriction endonucleases (REases) found in bacteria. The BmrI restriction-modification system was cloned by the methylase selection method, inverse PCR, and PCR. BmrI REase shows significant amino acid sequence identity to BfiI and a putative endonuclease MspBNCORF3798 from the sequenced Mesorhizobium sp. BNC1 genome. The EDTA-resistant BmrI REase was successfully over-expressed in a pre-modified E. coli strain from pET21a or pBAC-expIQ vectors. The recombinant BmrI REase shows strong promiscuous activity (star activity) in NEB buffers 1, 4, and an EDTA buffer. Star activity was diminished in buffers with 100-150 mM NaCl and 10 mM MgCl(2). His-tagged BmrI192, the N-terminal cleavage domain of BmrI, was expressed in E. coli and purified from inclusion bodies. The refolded BmrI192 protein possesses non-specific endonuclease activity. BmrI192 variants with a single Ser to Cys substitution (S76C or S90C) and BmrI200 (T200C) with a single Cys at the C-terminal end were also constructed and purified. BmrI200 digests both single-strand (ss) and double-strand (ds) DNA and the nuclease activity on ss DNA is at least 5-fold higher than that on ds DNA. The Cys-containing BmrI192 and BmrI200 nuclease variants may be useful for coupling to other DNA binding elements such as synthetic zinc fingers, thio-containing locked nucleic acids (LNA) or peptide nucleic acids (PNA).


PLOS ONE | 2013

The Role of the Methyltransferase Domain of Bifunctional Restriction Enzyme RM.BpuSI in Cleavage Activity

Arthur Sarrade-Loucheur; Shuang-yong Xu; Siu-Hong Chan

Restriction enzyme (REase) RM.BpuSI can be described as a Type IIS/C/G REase for its cleavage site outside of the recognition sequence (Type IIS), bifunctional polypeptide possessing both methyltransferase (MTase) and endonuclease activities (Type IIC) and endonuclease activity stimulated by S-adenosyl-L-methionine (SAM) (Type IIG). The stimulatory effect of SAM on cleavage activity presents a major paradox: a co-factor of the MTase activity that renders the substrate unsusceptible to cleavage enhances the cleavage activity. Here we show that the RM.BpuSI MTase activity modifies both cleavage substrate and product only when they are unmethylated. The MTase activity is, however, much lower than that of M1.BpuSI and is thought not to be the major MTase for host DNA protection. SAM and sinefungin (SIN) increase the Vmax of the RM.BpuSI cleavage activity with a proportional change in Km, suggesting the presence of an energetically more favorable pathway is taken. We further showed that RM.BpuSI undergoes substantial conformational changes in the presence of Ca2+, SIN, cleavage substrate and/or product. Distinct conformers are inferred as the pre-cleavage/cleavage state (in the presence of Ca2+, substrate or both) and MTase state (in the presence of SIN and substrate, SIN and product or product alone). Interestingly, RM.BpuSI adopts a unique conformation when only SIN is present. This SIN-bound state is inferred as a branch point for cleavage and MTase activity and an intermediate to an energetically favorable pathway for cleavage, probably through increasing the binding affinity of the substrate to the enzyme under cleavage conditions. Mutation of a SAM-binding residue resulted in altered conformational changes in the presence of substrate or Ca2+ and eliminated cleavage activity. The present study underscores the role of the MTase domain as facilitator of efficient cleavage activity for RM.BpuSI.


Structure | 2010

Unusual Target Site Disruption by the Rare-Cutting HNH Restriction Endonuclease PacI

Betty W. Shen; Daniel F. Heiter; Siu-Hong Chan; Hua Wang; Shuang-yong Xu; Richard D. Morgan; Geoffrey G. Wilson; Barry L. Stoddard


Structure | 2005

Crystal Structure of the Restriction-Modification System Control Element C.BclI and Mapping of Its Binding Site

Michael R. Sawaya; Zhenyu Zhu; Fana B. Mersha; Siu-Hong Chan; Rajesh Dabur; Shuang-yong Xu; Ganesaratnam K. Balendiran


Nucleic Acids Research | 2004

Cloning of CviPII nicking and modification system from chlorella virus NYs-1 and application of Nt.CviPII in random DNA amplification

Siu-Hong Chan; Zhenyu Zhu; James L. Van Etten; Shuang-yong Xu


Archive | 2008

High fidelity restriction endonucleases

Zhenyu Zhu; Aine Blanchard; Shuang Yong Xu; Shengxi Guan; Hua Wei; Penghua Zhang; Dapeng Sun; Siu-Hong Chan

Collaboration


Dive into the Siu-Hong Chan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge