Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuguang Ma is active.

Publication


Featured researches published by Shuguang Ma.


Nature Chemical Biology | 2016

Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition

Aaron Boudreau; Hans E. Purkey; Anna Hitz; Kirk Robarge; David Peterson; Sharada Labadie; Mandy Kwong; Rebecca Hong; Min Gao; Christopher Del Nagro; Raju V. Pusapati; Shuguang Ma; Laurent Salphati; Jodie Pang; Aihe Zhou; Tommy Lai; Yingjie Li; Zhongguo Chen; Binqing Wei; Ivana Yen; Steve Sideris; Mark L. McCleland; Ron Firestein; Laura Corson; Alex Vanderbilt; Simon Williams; Anneleen Daemen; Marcia Belvin; Charles Eigenbrot; Peter K. Jackson

Metabolic reprogramming in tumors represents a potential therapeutic target. Herein we used shRNA depletion and a novel lactate dehydrogenase (LDHA) inhibitor, GNE-140, to probe the role of LDHA in tumor growth in vitro and in vivo. In MIA PaCa-2 human pancreatic cells, LDHA inhibition rapidly affected global metabolism, although cell death only occurred after 2 d of continuous LDHA inhibition. Pancreatic cell lines that utilize oxidative phosphorylation (OXPHOS) rather than glycolysis were inherently resistant to GNE-140, but could be resensitized to GNE-140 with the OXPHOS inhibitor phenformin. Acquired resistance to GNE-140 was driven by activation of the AMPK-mTOR-S6K signaling pathway, which led to increased OXPHOS, and inhibitors targeting this pathway could prevent resistance. Thus, combining an LDHA inhibitor with compounds targeting the mitochondrial or AMPK-S6K signaling axis may not only broaden the clinical utility of LDHA inhibitors beyond glycolytically dependent tumors but also reduce the emergence of resistance to LDHA inhibition.


Bioorganic & Medicinal Chemistry Letters | 2014

Identification of substituted 3-hydroxy-2-mercaptocyclohex-2-enones as potent inhibitors of human lactate dehydrogenase.

Peter S. Dragovich; Benjamin P. Fauber; Jason Boggs; Jinhua Chen; Laura Corson; Charles Z. Ding; Charles Eigenbrot; HongXiu Ge; Anthony M. Giannetti; Thomas Hunsaker; Sharada Labadie; C Li; Yichin Liu; Shuguang Ma; Shiva Malek; David Peterson; Keith Pitts; Hans E. Purkey; Kirk Robarge; Laurent Salphati; Steven Sideris; Mark Ultsch; Erica VanderPorten; J Wang; Binqing Wei; Qing Xu; Ivana Yen; Qin Yue; Huihui Zhang; Xuying Zhang

A novel class of 3-hydroxy-2-mercaptocyclohex-2-enone-containing inhibitors of human lactate dehydrogenase (LDH) was identified through a high-throughput screening approach. Biochemical and surface plasmon resonance experiments performed with a screening hit (LDHA IC50=1.7 μM) indicated that the compound specifically associated with human LDHA in a manner that required simultaneous binding of the NADH co-factor. Structural variation of this screening hit resulted in significant improvements in LDHA biochemical inhibition activity (best IC50=0.18 μM). Two crystal structures of optimized compounds bound to human LDHA were obtained and explained many of the observed structure-activity relationships. In addition, an optimized inhibitor exhibited good pharmacokinetic properties after oral administration to rats (F=45%).


Drug Metabolism and Disposition | 2015

Absorption, Metabolism, Excretion, and the Contribution of Intestinal Metabolism to the Oral Disposition of [14C]Cobimetinib, a MEK Inhibitor, in Humans

Ryan Takahashi; Edna F. Choo; Shuguang Ma; Susan Wong; Jason S. Halladay; Yuzhong Deng; Isabelle Rooney; M. Gates; Cornelis E. C. A. Hop; Siamak Cyrus Khojasteh; Mark J. Dresser; Luna Musib

The pharmacokinetics, metabolism, and excretion of cobimetinib, a MEK inhibitor, were characterized in healthy male subjects (n = 6) following a single 20 mg (200 μCi) oral dose. Unchanged cobimetinib and M16 (glycine conjugate of hydrolyzed cobimetinib) were the major circulating species, accounting for 20.5% and 18.3% of the drug-related material in plasma up to 48 hours postdose, respectively. Other circulating metabolites were minor, accounting for less than 10% of drug-related material in plasma. The total recovery of the administered radioactivity was 94.3% (±1.6%, S.D.) with 76.5% (±2.3%) in feces and 17.8% (±2.5%) in urine. Metabolite profiling indicated that cobimetinib had been extensively metabolized with only 1.6% and 6.6% of the dose remaining as unchanged drug in urine and feces, respectively. In vitro phenotyping experiments indicated that CYP3A4 was predominantly responsible for metabolizing cobimetinib. From this study, we concluded that cobimetinib had been well absorbed (fraction absorbed, Fa = 0.88). Given this good absorption and the previously determined low hepatic clearance, the systemic exposures were lower than expected (bioavailability, F = 0.28). We hypothesized that intestinal metabolism had strongly attenuated the oral bioavailability of cobimetinib. Supporting this hypothesis, the fraction escaping gut wall elimination (Fg) was estimated to be 0.37 based on F and Fa from this study and the fraction escaping hepatic elimination (Fh) from the absolute bioavailability study (F = Fa × Fh × Fg). Physiologically based pharmacokinetics modeling also showed that intestinal clearance had to be included to adequately describe the oral profile. These collective data suggested that cobimetinib was well absorbed following oral administration and extensively metabolized with intestinal first-pass metabolism contributing to its disposition.


Bioanalysis | 2014

Measuring NAD+ levels in mouse blood and tissue samples via a surrogate matrix approach using LC–MS/MS

Xiaorong Liang; Lulu Yang; Ann R Qin; Justin Ly; Bianca M. Liederer; Kirsten Messick; Shuguang Ma; Mark Zak; Peter S. Dragovich; Brian Dean; Cornelis E. C. A. Hop; Yuzhong Deng

BACKGROUND NAD(+) is an endogenous analyte and is unstable during blood sample collection, both of which present obstacles for quantitation. Moreover, current procedures for NAD(+) sample collection require onsite treatment with strong acid to stabilize the NAD(+) in mouse blood cells. RESULTS NAD(+) can be stabilized by addition of acid before the frozen mouse blood sample was thawed. A simple sample collection procedure was proposed to facilitate the analysis of NAD(+) in mouse blood and tissue samples. A LC-MS/MS method was developed for quantifying NAD(+) in mouse blood and various tissue samples. The described method was used to measure endogenous NAD(+) levels in mouse blood following oral administration of the nicotinamide phosphoribosyltransferase inhibitor GNE-617. CONCLUSION This study presents a suitable assay and sample collection procedure for high throughput screening of NAD(+) samples in preclinical discovery studies.


Drug Metabolism Letters | 2016

Elucidating the Mechanism of Tofacitinib Oxidative Decyanation

Hoa Le; Peter W. Fan; Susan Wong; Shuguang Ma; James P. Driscoll; Cornelis E. C. A. Hop; S. Cyrus Khojasteh

BACKGROUND Tofacitinib is known to generate two metabolites M2 (alcohol) and M4 (acid), which are formed as the result of oxidation and loss of the nitrile [1]. METHOD Systematic in vitro investigation into generation of M2 and M4 from tofacitinib. RESULTS In vitro using human liver microsomes, we found a new geminal diol metabolite of tofacitinib (MX) that lost the nitrile. MX was further reduced or oxidized to M2 (alcohol) and M4 (acid), respectively by enzymes such as aldo-keto reductase 1C1, aldehyde oxidase and possibly CYP3A4. Stable label studies using H2 18O and D2O suggested the source of oxygen was from water in the media. This was due to rapid water exchange with MX in the media prior to reduction to M2. In case of deuterium, one was incorporated in M2 and this was mainly as a result of tofacitinib rapid exchange of two deuterium atoms from D2O onto methylene position. After formation of MX, there was one deuterium that no longer exchanged with water and therefore retained in M2 for further reduction. CONCLUSION The proposed mechanism involved the initial oxidation by P450 at the α-carbon to the nitrile group generating an unstable cyanohydrin intermediate; followed by the loss of the nitrile group to form a new geminal diol metabolite (MX).


Xenobiotica | 2017

Absorption, metabolism and excretion of cobimetinib, an oral MEK inhibitor, in rats and dogs

Ryan Takahashi; Shuguang Ma; Qin Yue; Kim-Kang H; Yi Y; Justin Ly; Jason Boggs; Fettes A; McClory A; Yuzhong Deng; Cornelis E. C. A. Hop; Siamak Cyrus Khojasteh; Edna F. Choo

Abstract 1. The absorption, metabolism and excretion of cobimetinib, an allosteric inhibitor of MEK1/2, was characterized in mass balance studies following single oral administration of radiolabeled (14C) cobimetinib to Sprague–Dawley rats (30 mg/kg) and Beagle dogs (5 mg/kg). 2. The oral dose of cobimetinib was well absorbed (81% and 71% in rats and dogs, respectively). The maximal plasma concentrations for cobimetinib and total radioactivity were reached at 2–3 h post-dose. Drug-derived radioactivity was fully recovered (∼90% of the administered dose) with the majority eliminated in feces via biliary excretion (78% of the dose for rats and 65% for dogs). The recoveries were nearly complete after the first 48 h following dosing. 3. The metabolic profiles indicated extensive metabolism of cobimetinib prior to its elimination. For rats, the predominant metabolic pathway was hydroxylation at the aromatic core. Lower exposures for cobimetinib and total radioactivity were observed in male rats compared with female rats, which was consistent to in vitro higher clearance of cobimetinib for male rats. For dogs, sequential oxidative reactions occurred at the aliphatic portion of the molecule. Though rat metabolism was well-predicted in vitro with liver microsomes, dog metabolism was not. 4. Rats and dogs were exposed to the two major human circulating Phase II metabolites, which provided relevant metabolite safety assessment. In general, the extensive sequential oxidative metabolism in dogs, and not the aromatic hydroxylation in rats, was more indicative of the metabolism of cobimetinib in humans.


Drug Metabolism Letters | 2017

Mixed Matrix Method Provides A Reliable Metabolite Exposure Comparison for Assessment of Metabolites in Safety Testing (MIST)

Ryan Takahashi; Cyrus Khojasteh; Matthew Blake Wright; Cornelis E. C. A. Hop; Shuguang Ma

BACKGROUND The regulatory guidances on metabolites in safety testing (MIST) by US Food and Drug Administration (FDA) and International Conference on Harmonisation (ICH) describe the necessity to assess exposures of major circulating metabolites in humans at steady state relative to exposures achieved in nonclinical safety studies prior to the initiation of large scale clinical trials. This comparison can be accomplished by measuring metabolite concentrations in animals and humans with validated bioanalytical methods. However, bioanalysis of metabolites in multiple species and multiple studies is resource intensive and may impact the timelines of clinical studies. METHOD A simple, reliable and accurate method has been developed for quantitative assessment of metabolite coverage in preclinical safety species by mixing equal volume of human plasma with blank plasma of animal species and vice versa followed by an analysis using LC-SRM or LC-HRMS. Here, we explored the reliability and accuracy of this method in several development projects at Genentech and compared the results to those obtained from validated bioanalytical methods. RESULTS The mixed-matrix method provided comparable accuracy (within ±20%) to those obtained from validated bioanalysis but does not require authentic standards or radiolabeled compounds, which could translate to time and resource savings in drug development. CONCLUSION Quantitative assessment of metabolite coverage in safety species can be made using mixed matrix method with similar accuracy and scientific rigor to those obtained from validated bioanalytical methods. Moving forward, we are encouraging the industry and regulators to consider accepting the mixed matrix method for assessing metabolite exposure comparisons between humans and animal species used in toxicology studies.


Drug Metabolism and Disposition | 2014

Elucidating the Mechanism of Cytochrome P450–Mediated Pyrimidine Ring Conversion to Pyrazole Metabolites with the BACE1 Inhibitor GNE-892 in Rats

Ryan Takahashi; Shuguang Ma; Alan Deese; Qin Yue; Heasook Kim-Kang; Yijun Yi; Mike Siu; Kevin W. Hunt; Nicholas C Kallan; Cornelis E. C. A. Hop; Xingrong Liu; Siamak Cyrus Khojasteh

We investigated an uncommon biotransformation of pyrimidine during the metabolism of GNE-892 ((R)-2-amino-1,3′,3′-trimethyl-7′-(pyrimidin-5-yl)-3′,4′-dihydro-2′H-spiro[imidazole-4,1′-naphthalen]-5(1H)-one), a β-secretase 1 inhibitor. Three novel metabolites, formed by conversion of pyrimidine to pyrazole, were observed in the 14C-radiolabeled mass balance study in rats. Their structures were characterized by high-resolution mass spectrometry and nuclear magnetic resonance. Although these metabolites accounted for <5% of the administered dose, their unique nature prompted us to conduct further investigations. The pyrazole-containing metabolites were formed in vitro with rat hepatocytes and liver microsomes, which supported that they were formed during hepatic metabolism. Further, their generation was inhibited by 1-aminobenzotriazole, indicating involvement of cytochrome P450s. Studies with rat recombinant enzymes identified that CYP2D2 generated the N-hydroxypyrazole metabolite from GNE-892. This biotransformation proceeded through multiple steps from the likely precursor, pyrimidine N-oxide. On the basis of these data, we propose a mechanism in which the pyrimidine is activated via N-oxidation, followed by a second oxidative process that opens the pyrimidine ring to form a formamide intermediate. After hydrolysis of the formamide, a carbon is lost as formic acid, together with ring closure to form the pyrazole ring. This article highlights a mechanistic approach for determining the biotransformation of the pyrimidine to a pyrazole for GNE-892.


Drug Metabolism and Disposition | 2014

Investigations into the Mechanisms of Pyridine Ring Cleavage in Vismodegib

Siamak Cyrus Khojasteh; Qin Yue; Shuguang Ma; Georgette Castanedo; Jacob Chen; Joseph P. Lyssikatos; Teresa Mulder; Ryan Takahashi; Justin Ly; Kirsten Messick; Wei Jia; Lichuan Liu; Cornelis E. C. A. Hop; Harvey Wong

Vismodegib (Erivedge, GDC-0449) is a first-in-class, orally administered small-molecule Hedgehog pathway inhibitor that is approved for the treatment of advanced basal cell carcinoma. Previously, we reported results from preclinical and clinical radiolabeled mass balance studies in which we determined that metabolism is the main route of vismodegib elimination. The metabolites of vismodegib are primarily the result of oxidation followed by glucuronidation. The focus of the current work is to probe the mechanisms of formation of three pyridine ring-cleaved metabolites of vismodegib, mainly M9, M13, and M18, using in vitro, ex vivo liver perfusion and in vivo rat studies. The use of stable-labeled (13C2,15N)vismodegib on the pyridine ring exhibited that the loss of carbon observed in both M9 and M13 was from the C-6 position of pyridine. Interestingly, the source of the nitrogen atom in the amide of M9 was from the pyridine. Evidence for the formation of aldehyde intermediates was observed using trapping agents as well as 18O-water. Finally, we conclude that cytochrome P450 is involved in the formation of M9, M13, and M18 and that M3 (the major mono-oxidative metabolite) is not the precursor for the formation of these cleaved products; rather, M18 is the primary cleaved metabolite.


Drug Metabolism and Disposition | 2017

CYP1A1-Mediated Intramolecular Rearrangement of Aminoazepane in GDC-0339

Ryan Takahashi; Xiaojing Wang; Nathaniel L Segraves; Jing Wang; Jae H. Chang; Siamak Cyrus Khojasteh; Shuguang Ma

GDC-0339 is a novel small molecule pan-Pim kinase inhibitor that was discovered as a potential treatment of multiple myeloma. During the in vitro and in vivo metabolite profiling of GDC-0339, a metabolite was detected that had the same elemental composition as the parent but was distinct with respect to its chromatographic separation and mass spectrometric fragmentation pattern. High resolution tandem mass spectrometry data indicated the metabolite was modified at the aminoazepane moiety. The structure was solved by nuclear magnetic resonance analysis of the isolated metabolite and further confirmed by comparing it to a synthetic standard. These results indicated that the metabolite was formed by an intramolecular amine replacement reaction with the primary amine forming a new attachment to pyrazole without any change in stereochemistry. In vitro experiments showed cytochrome P450s catalyzed the reaction and demonstrated high isoform selectivity by CYP1A1. Results from kinetic experiments showed that the CYP1A1-mediated rearrangement of GDC-0339 was an efficient reaction with apparent turnover number (kcat) and Michaelis constant (Km) of 8.4 minutes−1 and 0.6 μM, respectively. The binding of GDC-0339 to the cytochrome P450 active site was examined by characterizing the direct inhibition of CYP1A1-mediated phenacetin O-deethylation, and GDC-0339 was a potent competitive inhibitor with Ki of 0.9 μM. This high affinity binding was unexpected given a narrow active site for CYP1A1 and GDC-0339 does not conform structurally to known CYP1A1 substrates, which are mostly polyaromatic planar molecules. Further, we explored some of the structural requirements for the rearrangement reaction and identified several analogs to GDC-0339 that undergo this biotransformation.

Collaboration


Dive into the Shuguang Ma's collaboration.

Researchain Logo
Decentralizing Knowledge