Shuguang Yuan
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuguang Yuan.
Current Medicinal Chemistry | 2012
Bartosz Trzaskowski; Dorota Latek; Shuguang Yuan; Umesh Ghoshdastider; Aleksander Debinski; Slawomir Filipek
G protein coupled receptors (GPCRs), also called 7TM receptors, form a huge superfamily of membrane proteins that, upon activation by extracellular agonists, pass the signal to the cell interior. Ligands can bind either to extracellular N-terminus and loops (e.g. glutamate receptors) or to the binding site within transmembrane helices (Rhodopsin-like family). They are all activated by agonists although a spontaneous auto-activation of an empty receptor can also be observed. Biochemical and crystallographic methods together with molecular dynamics simulations and other theoretical techniques provided models of the receptor activation based on the action of so-called “molecular switches” buried in the receptor structure. They are changed by agonists but also by inverse agonists evoking an ensemble of activation states leading toward different activation pathways. Switches discovered so far include the ionic lock switch, the 3-7 lock switch, the tyrosine toggle switch linked with the nPxxy motif in TM7, and the transmission switch. The latter one was proposed instead of the tryptophan rotamer toggle switch because no change of the rotamer was observed in structures of activated receptors. The global toggle switch suggested earlier consisting of a vertical rigid motion of TM6, seems also to be implausible based on the recent crystal structures of GPCRs with agonists. Theoretical and experimental methods (crystallography, NMR, specific spectroscopic methods like FRET/BRET but also single-molecule-force-spectroscopy) are currently used to study the effect of ligands on the receptor structure, location of stable structural segments/domains of GPCRs, and to answer the still open question on how ligands are binding: either via ensemble of conformational receptor states or rather via induced fit mechanisms. On the other hand the structural investigations of homo- and heterodimers and higher oligomers revealed the mechanism of allosteric signal transmission and receptor activation that could lead to design highly effective and selective allosteric or ago-allosteric drugs.
Angewandte Chemie | 2013
Shuguang Yuan; Horst Vogel; Slawomir Filipek
Dual effect of sodium ions: The activation of G-protein-coupled receptors depends on the presence of water molecules inside the receptor and also on allosteric interactions. The binding of sodium ions to the allosteric site of the μ opioid receptor was studied by microsecond molecular dynamics simulations and their seemingly contradictory roles in preventing ligand binding and facilitating receptor activation were explained.
Blood | 2010
Chunlei Zheng; Hui Hui Liu; Shuguang Yuan; Jiahai Zhou; Bin Zhang
The LMAN1-MCFD2 (lectin, mannose binding 1/multiple coagulation factor deficiency protein 2) cargo receptor complex transports coagulation factors V (FV) and VIII (FVIII) from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment (ERGIC). LMAN1 (ERGIC-53) is a hexameric transmembrane protein with a carbohydrate recognition domain (CRD) on the ER luminal side. Here, we show that mutations in the first beta sheet of the CRD abolish MCFD2 binding without affecting the mannose binding, suggesting that LMAN1 interacts with MCFD2 through its N-terminal beta sheet, consistent with recently reported crystal structures of the CRD-MCFD2 complex. Mutations in the Ca(2+)- and sugar-binding sites of the CRD disrupt FV and FVIII interactions, without affecting MCFD2 binding. This interaction is independent of MCFD2, as LMAN1 mutants defective in MCFD2 binding can still interact with FVIII. Thus, the CRD of LMAN1 contains distinct, separable binding sites for both its partner protein (MCFD2) and the cargo proteins (FV/FVIII). Monomeric LMAN1 mutants are defective in ER exit and unable to interact with MCFD2, suggesting that the oligomerization of LMAN1 is necessary for its cargo receptor function. These results point to a central role of LMAN1 in regulating the binding in the ER and the subsequent release in the ERGIC of FV and FVIII.
Plant Physiology | 2013
Katrien Le Roy; Rudy Vergauwen; Tom Struyf; Shuguang Yuan; Willem Lammens; Janka Matrai; Marc De Maeyer; Wim Van den Ende
An inactive invertase may indirectly stimulate the activity of active cell wall invertases. Cell wall invertases (cwINVs), with a high affinity for the cell wall, are fundamental enzymes in the control of plant growth, development, and carbon partitioning. Most interestingly, defective cwINVs have been described in several plant species. Their highly attenuated sucrose (Suc)-hydrolyzing capacity is due to the absence of aspartate-239 (Asp-239) and tryptophan-47 (Trp-47) homologs, crucial players for stable binding in the active site and subsequent hydrolysis. However, so far, the precise roles of such defective cwINVs remain unclear. In this paper, we report on the functional characterization of tobacco (Nicotiana tabacum) Nin88, a presumed fully active cwINV playing a crucial role during pollen development. It is demonstrated here that Nin88, lacking both Asp-239 and Trp-47 homologs, has no invertase activity. This was further supported by modeling studies and site-directed mutagenesis experiments, introducing both Asp-239 and Trp-47 homologs, leading to an enzyme with a distinct Suc-hydrolyzing capacity. In vitro experiments suggest that the addition of Nin88 counteracts the unproductive and rather aspecific binding of tobacco cwINV1 to the wall, leading to higher activities in the presence of Suc and a more efficient interaction with its cell wall inhibitor. A working model is presented based on these findings, allowing speculation on the putative role of Nin88 in muro. The results presented in this work are an important first step toward unraveling the specific roles of plant defective cwINVs.
Angewandte Chemie | 2014
Shuguang Yuan; Zhenquan Hu; Slawomir Filipek; Horst Vogel
The question how G-protein-coupled receptors transduce an extracellular signal by a sequence of transmembrane conformational transitions into an intracellular response remains to be solved at molecular detail. Herein, we use molecular dynamics simulations to reveal distinct conformational transitions of the adenosine A2A receptor, and we found that the conserved W246(6.48) residue in transmembrane helix TM6 performs a key rotamer toggle switch. Agonist binding induces the sidechain of W246(6.48) to fluctuate between two distinct conformations enabling the diffusion of water molecules from the bulk into the center of the receptor. After passing the W246(6.48) gate, the internal water molecules induce another conserved residue, Y288(7.53), to switch to a distinct rotamer conformation establishing a continuous transmembrane water pathway. Further, structural changes of TM6 and TM7 induce local structural changes of the adjacent lipid bilayer.
Plant Journal | 2012
Willem Lammens; Katrien Le Roy; Shuguang Yuan; Rudy Vergauwen; Anja Rabijns; André Van Laere; Sergei V. Strelkov; Wim Van den Ende
Fructans play important roles as reserve carbohydrates and stress protectants in plants, and additionally serve as prebiotics with emerging antioxidant properties. Various fructan types are synthesized by an array of plant fructosyltransferases belonging to family 32 of the glycoside hydrolases (GH32), clustering together with GH68 in Clan-J. Here, the 3D structure of a plant fructosyltransferase from a native source, the Pachysandra terminalis 6-SST/6-SFT (Pt6-SST/6-SFT), is reported. In addition to its 1-SST (1-kestose-forming) and hydrolytic side activities, the enzyme uses sucrose to create graminan- and levan-type fructans, which are probably associated with cold tolerance in this species. Furthermore, a Pt6-SST/6-SFT complex with 6-kestose was generated, representing a genuine acceptor binding modus at the +1, +2 and +3 subsites in the active site. The enzyme shows a unique configuration in the vicinity of its active site, including a unique D/Q couple located at the +1 subsite that plays a dual role in donor and acceptor substrate binding. Furthermore, it shows a unique orientation of some hydrophobic residues, probably contributing to its specific functionality. A model is presented showing formation of a β(2-6) fructosyl linkage on 6-kestose to create 6,6-nystose, a mechanism that differs from the creation of a β(2-1) fructosyl linkage on sucrose to produce 1-kestose. The structures shed light on the evolution of plant fructosyltransferases from their vacuolar invertase ancestors, and contribute to further understanding of the complex structure-function relationships within plant GH32 members.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Xu-Dong Kong; Shuguang Yuan; Lin Li; She Chen; Jian-He Xu; Jiahai Zhou
Significance Application of epoxide hydrolases in synthesizing chiral drug compounds has been hindered by their limited substrate range. The enzymatic production of bulky epoxides has proven remarkably challenging. In this work, we identified an active tunnel for substrate access and product release of an epoxide hydrolase with unusual (R)-enantioselectivity. Mutagenesis targeted to unblock the steric hindrance in the active pocket or the potential product release site resulted in variants with much higher activity toward α-naphthyl glycidyl ether, the precursor of β-adrenergic receptor blocking drug (S)-propranolol. The strategy presented here may be a useful alternative choice for rational design of enzymes toward bulky substrates. Optically pure epoxides are essential chiral precursors for the production of (S)-propranolol, (S)-alprenolol, and other β-adrenergic receptor blocking drugs. Although the enzymatic production of these bulky epoxides has proven difficult, here we report a method to effectively improve the activity of BmEH, an epoxide hydrolase from Bacillus megaterium ECU1001 toward α-naphthyl glycidyl ether, the precursor of (S)-propranolol, by eliminating the steric hindrance near the potential product-release site. Using X-ray crystallography, mass spectrum, and molecular dynamics calculations, we have identified an active tunnel for substrate access and product release of this enzyme. The crystal structures revealed that there is an independent product-release site in BmEH that was not included in other reported epoxide hydrolase structures. By alanine scanning, two mutants, F128A and M145A, targeted to expand the potential product-release site displayed 42 and 25 times higher activities toward α-naphthyl glycidyl ether than the wild-type enzyme, respectively. These results show great promise for structure-based rational design in improving the catalytic efficiency of industrial enzymes for bulky substrates.
PLOS ONE | 2012
Shuguang Yuan; Umesh Ghoshdastider; Bartosz Trzaskowski; Dorota Latek; Aleksander Debinski; Wojciech Puławski; Rongliang Wu; Volker Gerke; Slawomir Filipek
The Formyl Peptide Receptor 1 (FPR1) is an important chemotaxis receptor involved in various aspects of host defense and inflammatory processes. We constructed a model of FPR1 using as a novel template the chemokine receptor CXCR4 from the same branch of the phylogenetic tree of G-protein-coupled receptors. The previously employed template of rhodopsin contained a bulge at the extracellular part of TM2 which directly influenced binding of ligands. We also conducted molecular dynamics (MD) simulations of FPR1 in the apo form as well as in a form complexed with the agonist fMLF and the antagonist tBocMLF in the model membrane. During all MD simulation of the fMLF-FPR1 complex a water molecule transiently bridged the hydrogen bond between W2546.48 and N1083.35 in the middle of the receptor. We also observed a change in the cytoplasmic part of FPR1 of a rotamer of the Y3017.53 residue (tyrosine rotamer switch). This effect facilitated movement of more water molecules toward the receptor center. Such rotamer of Y3017.53 was not observed in any crystal structures of GPCRs which can suggest that this state is temporarily formed to pass the water molecules during the activation process. The presence of a distance between agonist and residues R2015.38 and R2055.42 on helix TM5 may suggest that the activation of FPR1 is similar to the activation of β-adrenergic receptors since their agonists are separated from serine residues on helix TM5. The removal of water molecules bridging these interactions in FPR1 can result in shrinking of the binding site during activation similarly to the shrinking observed in β-ARs. The number of GPCR crystal structures with agonists is still scarce so the designing of new ligands with agonistic properties is hampered, therefore homology modeling and docking can provide suitable models. Additionally, the MD simulations can be beneficial to outline the mechanisms of receptor activation and the agonist/antagonist sensing.
Angewandte Chemie | 2015
Shuguang Yuan; Krzysztof Palczewski; Qian Peng; Michal Kolinski; Horst Vogel; Slawomir Filipek
G-protein-coupled receptors (GPCRs) are important targets for treating severe diseases. However why certain molecules act as activators whereas others, with similar structures, block GPCR activation, is poorly understood since the same molecule can activate one receptor subtype while blocking another closely related receptor. To shed light on these central questions, we used all-atom, long-time-scale molecular dynamics simulations on the κ-opioid and μ-opioid receptors (κOR and μOR). We found that water molecules penetrating into the receptor interior mediate the activating versus blocking effects of a particular ligand-receptor interaction. Both the size and the flexibility of the bound ligand regulated water influx into the receptor. The solvent-accessible inner surface area was found to be a parameter that can help predict the function of the bound ligand.
Angewandte Chemie | 2016
Shuguang Yuan; H. C. Stephen Chan; Horst Vogel; Slawomir Filipek; Raymond C. Stevens; Krzysztof Palczewski
Abstract Human purinergic G protein‐coupled receptor P2Y1 (P2Y1R) is activated by adenosine 5′‐diphosphate (ADP) to induce platelet activation and thereby serves as an important antithrombotic drug target. Crystal structures of P2Y1R revealed that one ligand (MRS2500) binds to the extracellular vestibule of this GPCR, whereas another (BPTU) occupies the surface between transmembrane (TM) helices TM2 and TM3. We introduced a total of 20 μs all‐atom long‐timescale molecular dynamic (MD) simulations to inquire why two molecules in completely different locations both serve as antagonists while ADP activates the receptor. Our results indicate that BPTU acts as an antagonist by stabilizing extracellular helix bundles leading to an increase of the lipid order, whereas MRS2500 blocks signaling by occupying the ligand binding site. Both antagonists stabilize an ionic lock within the receptor. However, binding of ADP breaks this ionic lock, forming a continuous water channel that leads to P2Y1R activation.