Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raymond C. Stevens is active.

Publication


Featured researches published by Raymond C. Stevens.


Science | 2007

High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor

Vadim Cherezov; Daniel M. Rosenbaum; Michael A. Hanson; Søren Rasmussen; Foon Sun Thian; Tong Sun Kobilka; Hee Jung Choi; Peter Kuhn; William I. Weis; Brian K. Kobilka; Raymond C. Stevens

Heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human β2-adrenergic receptor–T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein–coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the β2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.


Nature | 2013

Structure of the human glucagon class B G-protein-coupled receptor

Fai Yiu Siu; Min He; Chris de Graaf; Gye Won Han; Dehua Yang; Zhiyun Zhang; Caihong Zhou; Qingping Xu; Daniel Wacker; Jeremiah S. Joseph; Wei Liu; Jesper Lau; Vadim Cherezov; Vsevolod Katritch; Ming-Wei Wang; Raymond C. Stevens

Binding of the glucagon peptide to the glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting; thus GCGR plays an important role in glucose homeostasis. Here we report the crystal structure of the seven transmembrane helical domain of human GCGR at 3.4 Å resolution, complemented by extensive site-specific mutagenesis, and a hybrid model of glucagon bound to GCGR to understand the molecular recognition of the receptor for its native ligand. Beyond the shared seven transmembrane fold, the GCGR transmembrane domain deviates from class A G-protein-coupled receptors with a large ligand-binding pocket and the first transmembrane helix having a ‘stalk’ region that extends three alpha-helical turns above the plane of the membrane. The stalk positions the extracellular domain (∼12 kilodaltons) relative to the membrane to form the glucagon-binding site that captures the peptide and facilitates the insertion of glucagon’s amino terminus into the seven transmembrane domain.


Nature Communications | 2015

Conformational states of the full-length glucagon receptor.

Linlin Yang; Dehua Yang; Chris de Graaf; Arne Moeller; Graham M. West; Venkatasubramanian Dharmarajan; Chong Wang; Fai Y. Siu; Gaojie Song; Steffen Reedtz-Runge; Bruce D. Pascal; Beili Wu; Clinton S. Potter; Hu Zhou; Patrick R. Griffin; Bridget Carragher; Huaiyu Yang; Ming-Wei Wang; Raymond C. Stevens; Hualiang Jiang

Class B G protein-coupled receptors are composed of an extracellular domain (ECD) and a seven-transmembrane (7TM) domain, and their signalling is regulated by peptide hormones. Using a hybrid structural biology approach together with the ECD and 7TM domain crystal structures of the glucagon receptor (GCGR), we examine the relationship between full-length receptor conformation and peptide ligand binding. Molecular dynamics (MD) and disulfide crosslinking studies suggest that apo-GCGR can adopt both an open and closed conformation associated with extensive contacts between the ECD and 7TM domain. The electron microscopy (EM) map of the full-length GCGR shows how a monoclonal antibody stabilizes the ECD and 7TM domain in an elongated conformation. Hydrogen/deuterium exchange (HDX) studies and MD simulations indicate that an open conformation is also stabilized by peptide ligand binding. The combined studies reveal the open/closed states of GCGR and suggest that glucagon binds to GCGR by a conformational selection mechanism.


Science | 2008

The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist

Veli-Pekka Jaakola; Mark T. Griffith; Michael A. Hanson; Vadim Cherezov; Ellen Y.T. Chien; J. Robert Lane; Adriaan P. IJzerman; Raymond C. Stevens

The adenosine class of heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A2A adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extended conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.


Science | 2010

Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.

Beili Wu; Ellen Y.T. Chien; Clifford D. Mol; Gustavo Fenalti; Wei Liu; Vsevolod Katritch; Ruben Abagyan; Alexei Brooun; Peter A. Wells; F. Christopher Bi; Damon J. Hamel; Peter Kuhn; Tracy M. Handel; Vadim Cherezov; Raymond C. Stevens

Regulating Migration The migration of cells around the body is an important factor in cancer development and the establishment of infection. Movement is induced by small proteins called chemokines, and so for a specific function, migration is controlled by a relevant chemokine binding to its respective receptor. This family of receptors is known as guanine (G) protein–coupled receptors, which span cell membranes to mediate between external signals from chemokines and internal mechanisms. The chemokine receptor CXCR4 is implicated in many types of cancer and in infection, and Wu et al. (p. 1066, published online 7 October; see the Report by Chien et al.) report on a series of crystal structures obtained for CXCR4 bound to small molecules. In every case, the same homodimer structure was observed, suggesting that the interface is functionally relevant. These structures offer insights into the interactions between CXCR4 and its natural chemokine, as well as with the virus HIV-1. Five crystal structures provide insight into chemokine and HIV-1 recognition. Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein–coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein–coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.


Science | 2009

The 2.6 Angstrom Crystal Structure of a Human A[subscript 2A] Adenosine Receptor Bound to an Antagonist

Veli-Pekka Jaakola; Mark T. Griffith; Michael A. Hanson; Vadim Cherezov; Ellen Y.T. Chien; J. Robert Lane; Adriaan P. IJzerman; Raymond C. Stevens; Leiden; Amsterdam

The adenosine class of heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A2A adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extended conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.


Science | 2007

GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function

Daniel M. Rosenbaum; Vadim Cherezov; Michael A. Hanson; Søren Rasmussen; Foon Sun Thian; Tong Sun Kobilka; Hee Jung Choi; Xiao-Jie Yao; William I. Weis; Raymond C. Stevens; Brian K. Kobilka

The β2-adrenergic receptor (β2AR) is a well-studied prototype for heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the β2AR and to facilitate its crystallization, we engineered a β2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR (“β2AR-T4L”) and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of β2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.


Science | 2010

Structure of the human dopamine d3 receptor in complex with a d2/d3 selective antagonist.

Ellen Y.T. Chien; Wei Liu; Qiang Zhao; Vsevolod Katritch; Gye Won Han; Michael A. Hanson; Lei Shi; Amy Hauck Newman; Jonathan A. Javitch; Vadim Cherezov; Raymond C. Stevens

Tweaking Dopamine Reception Dopamine modulates many cognitive and emotional functions of the human brain by activating G protein–coupled receptors. Antipsychotic drugs that block two of the receptor subtypes are used to treat schizophrenia but have multiple side effects. Chien et al. (p. 1091; see the Research Article by Wu et al.) resolved the crystal structure of one receptor in complex with a small-molecule inhibitor at 3.15 angstrom resolution. Homology modeling with other receptor subtypes might be a promising route to reveal potential structural differences that can be exploited in the design of selective therapeutic inhibitors having fewer side effects. Discovery of a binding site in the extracellular domain of a dopamine receptor offers hope for more selective therapeutics. Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein–coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.


Nature Structural & Molecular Biology | 1998

Crystal structure of botulinum neurotoxin type A and implications for toxicity.

D.B Lacy; William H. Tepp; A.C Cohen; Bibhuti R. DasGupta; Raymond C. Stevens

Botulinum neurotoxin type A (BoNT/A) is the potent disease agent in botulism, a potential biological weapon and an effective therapeutic drug for involuntary muscle disorders. The crystal structure of the entire 1,285 amino acid di-chain neurotoxin was determined at 3.3 Å resolution. The structure reveals that the translocation domain contains a central pair of αhelices 105 Å long and a ~50 residue loop or belt that wraps around the catalytic domain. This belt partially occludes a large channel leading to a buried, negative active site — a feature that calls for radically different inhibitor design strategies from those currently used. The fold of the translocation domain suggests a mechanism of pore formation different from other toxins. Lastly, the toxin appears as a hybrid of varied structural motifs and suggests a modular assembly of functional subunits to yield pathogenesis.


Science | 2011

Structure of an Agonist-Bound Human A2A Adenosine Receptor

Fei Xu; Huixian Wu; Vsevolod Katritch; Gye Won Han; Kenneth A. Jacobson; Zhan-Guo Gao; Vadim Cherezov; Raymond C. Stevens

Changes associated with conformationally selective agonist binding shed light on G protein–coupled receptor activation. Activation of G protein–coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A2A adenosine receptor (A2AAR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A2AAR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A2AAR and its ligand. The results define the molecule UK-432097 as a “conformationally selective agonist” capable of receptor stabilization in a specific active-state configuration.

Collaboration


Dive into the Raymond C. Stevens's collaboration.

Top Co-Authors

Avatar

Peter Kuhn

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Gye Won Han

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Vadim Cherezov

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Vsevolod Katritch

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Michael A. Hanson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Kreusch

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar

Heath E. Klock

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel McMullan

Genomics Institute of the Novartis Research Foundation

View shared research outputs
Researchain Logo
Decentralizing Knowledge