Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuhei Ishikura is active.

Publication


Featured researches published by Shuhei Ishikura.


American Journal of Physiology-cell Physiology | 2008

Muscle cells engage Rab8A and myosin Vb in insulin-dependent GLUT4 translocation

Shuhei Ishikura; Amira Klip

Insulin causes translocation of glucose transporter 4 (GLUT4) to the membrane of muscle and fat cells, a process requiring Akt activation. Two Rab-GTPase-activating proteins (Rab-GAP), AS160 and TBC1D1, were identified as Akt substrates. AS160 phosphorylation is required for insulin-stimulated GLUT4 translocation, but the participation of TBC1D1 on muscle cell GLUT4 is unknown. Moreover, there is controversy as to the AS160/TBC1D1 target Rabs in fat and muscle cells, and Rab effectors are unknown. Here we examined the effect of knockdown of AS160, TBC1D1, and Rabs 8A, 8B, 10, and 14 (in vitro substrates of AS160 and TBC1D1 Rab-GAP activities) on insulin-induced GLUT4 translocation in L6 muscle cells. Silencing AS160 or TBC1D1 increased surface GLUT4 in unstimulated cells but did not prevent insulin-induced GLUT4 translocation. Knockdown of Rab8A and Rab14, but not of Rab8B or Rab10, inhibited insulin-induced GLUT4 translocation. Furthermore, silencing Rab8A or Rab14 but not Rab8B or Rab10 restored the basal-state intracellular retention of GLUT4 impaired by AS160 or TBC1D1 knockdown. Lastly, overexpression of a fragment of myosin Vb, a recently identified Rab8A-interacting protein, inhibited insulin-induced GLUT4 translocation and altered the subcellular distribution of GTP-loaded Rab8A. These results support a model whereby AS160, Rab8A, and myosin Vb are required for insulin-induced GLUT4 translocation in muscle cells, potentially as part of a linear signaling cascade.


Journal of Biological Chemistry | 2008

GLUT4 Vesicle Recruitment and Fusion Are Differentially Regulated by Rac, AS160, and Rab8A in Muscle Cells

Varinder K. Randhawa; Shuhei Ishikura; Ilana Talior-Volodarsky; Alex Won-Pang Cheng; Nish Patel; John H. Hartwig; Amira Klip

Insulin increases glucose uptake into muscle by enhancing the surface recycling of GLUT4 transporters. In myoblasts, insulin signals bifurcate downstream of phosphatidylinositol 3-kinase into separate Akt and Rac/actin arms. Akt-mediated Rab-GAP AS160 phosphorylation and Rac/actin are required for net insulin gain of GLUT4, but the specific steps (vesicle recruitment, docking or fusion) regulated by Rac, actin dynamics, and AS160 target Rab8A are unknown. In L6 myoblasts expressing GLUT4myc, blocking vesicle fusion by tetanus toxin cleavage of VAMP2 impeded GLUT4myc membrane insertion without diminishing its build-up at the cell periphery. Conversely, actin disruption by dominant negative Rac or Latrunculin B abolished insulin-induced surface and submembrane GLUT4myc accumulation. Expression of non-phosphorylatable AS160 (AS160-4P) abrogated membrane insertion of GLUT4myc and partially reduced its cortical build-up, an effect magnified by selective Rab8A knockdown. We propose that insulin-induced actin dynamics participates in GLUT4myc vesicle retention beneath the membrane, whereas AS160 phosphorylation is essential for GLUT4myc vesicle-membrane docking/fusion and also contributes to GLUT4myc cortical availability through Rab8A.


Journal of Biological Chemistry | 2010

Serine Residues in the Cytosolic Tail of the T-cell Antigen Receptor α-Chain Mediate Ubiquitination and Endoplasmic Reticulum-associated Degradation of the Unassembled Protein

Shuhei Ishikura; Allan M. Weissman; Juan S. Bonifacino

The T-cell antigen receptor (TCR) α-chain (TCRα) is a type I integral membrane protein that becomes ubiquitinated and targeted to the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway when it fails to assemble into the heteromeric TCR complex. Remarkably, TCRα has a cytosolic tail of only five amino acid residues (i.e. RLWSS), none of which is the conventional ubiquitin acceptor, lysine. Herein we report that substitution of two conserved serine residues in the cytosolic tail of TCRα to alanine decreased ubiquitination, whereas placement of additional serine residues enhanced it. Moreover, replacement of the cytosolic serine residues by other ubiquitinatable residues (i.e. cysteine, threonine, or lysine) allowed ubiquitination to take place. Serine-dependent ubiquitination perfectly correlated with targeting of TCRα for ERAD. We also found that this ubiquitination was mediated by the ER-localized ubiquitin ligase, HRD1. These findings indicate that serine-dependent, HRD1-mediated ubiquitination targets TCRα to the ERAD pathway.


Journal of Cell Science | 2009

The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2

Sean M. Hartig; Shuhei Ishikura; Rachel S. Hicklen; Yanming Feng; Elisabeth G. Blanchard; Kevin A. Voelker; Christina S. Pichot; Robert W. Grange; Robert M. Raphael; Amira Klip; Seth J. Corey

F-BAR proteins are a newly described family of proteins with unknown physiological significance. Because F-BAR proteins, including Cdc42 interacting protein-4 (CIP4), drive membrane deformation and affect endocytosis, we investigated the role of CIP4 in GLUT4 traffic by flow cytometry in GLUT4myc-expressing L6 myoblasts (L6 GLUT4myc). L6 GLUT4myc cells express CIP4a as the predominant F-BAR protein. siRNA knockdown of CIP4 increased insulin-stimulated 14C-deoxyglucose uptake by elevating cell-surface GLUT4. Enhanced surface GLUT4 was due to decreased endocytosis, which correlated with lower transferrin internalization. Immunoprecipitation of endogenous CIP4 revealed that CIP4 interacted with N-WASp and Dynamin-2 in an insulin-dependent manner. FRET confirmed the insulin-dependent, subcellular properties of these interactions. Insulin exposure stimulated specific interactions in plasma membrane and cytosolic compartments, followed by a steady-state response that underlies the coordination of proteins needed for GLUT4 traffic. Our findings reveal a physiological function for F-BAR proteins, supporting a previously unrecognized role for the F-BAR protein CIP4 in GLUT4 endocytosis, and show that interactions between CIP4 and Dynamin-2 and between CIP4 and NWASp are spatially coordinated to promote function.


American Journal of Physiology-endocrinology and Metabolism | 2010

Contraction-related stimuli regulate GLUT4 traffic in C2C12-GLUT4myc skeletal muscle cells

Wenyan Niu; Philip J. Bilan; Shuhei Ishikura; Jonathan D. Schertzer; Ariel Contreras-Ferrat; Zhengxiang Fu; Jie Liu; Shlomit Boguslavsky; Kevin P. Foley; Zhi Liu; Jinru Li; Guilan Chu; Thomas Panakkezhum; Gary D. Lopaschuk; Sergio Lavandero; Zhi Yao; Amira Klip

Muscle contraction stimulates glucose uptake acutely to increase energy supply, but suitable cellular models that faithfully reproduce this complex phenomenon are lacking. To this end, we have developed a cellular model of contracting C(2)C(12) myotubes overexpressing GLUT4 with an exofacial myc-epitope tag (GLUT4myc) and explored stimulation of GLUT4 traffic by physiologically relevant agents. Carbachol (an acetylcholine receptor agonist) induced a gain in cell surface GLUT4myc that was mediated by nicotinic acetylcholine receptors. Carbachol also activated AMPK, and this response was sensitive to the contractile myosin ATPase inhibitor N-benzyl-p-toluenesulfonamide. The gain in surface GLUT4myc elicited by carbachol or by the AMPK activator 5-amino-4-carboxamide-1 beta-ribose was sensitive to chemical inhibition of AMPK activity by compound C and partially reduced by siRNA-mediated knockdown of AMPK catalytic subunits or LKB1. In addition, the carbachol-induced gain in cell surface GLUT4myc was partially sensitive to chelation of intracellular calcium with BAPTA-AM. However, the carbachol-induced gain in cell surface GLUT4myc was not sensitive to the CaMKK inhibitor STO-609 despite expression of both isoforms of this enzyme and a rise in cytosolic calcium by carbachol. Therefore, separate AMPK- and calcium-dependent signals contribute to mobilizing GLUT4 in response to carbachol, providing an in vitro cell model that recapitulates the two major signals whereby acute contraction regulates glucose uptake in skeletal muscle. This system will be ideal to further analyze the underlying molecular events of contraction-regulated GLUT4 traffic.


Current protocols in pharmacology | 2010

Documenting GLUT4 Exocytosis and Endocytosis in Muscle Cell Monolayers

Shuhei Ishikura; Costin N. Antonescu; Amira Klip

The elevated blood glucose following a meal is cleared by insulin‐stimulated glucose entry into muscle and fat cells. The hormone increases the amount of the glucose transporter GLUT4 at the plasma membrane in these tissues at the expense of preformed intracellular pools. In addition, muscle contraction also increases glucose uptake via a gain in GLUT4 at the plasma membrane. Regulation of GLUT4 levels at the cell surface could arise from alterations in the rate of its exocytosis, endocytosis, or both. Hence, methods that can independently measure these traffic parameters for GLUT4 are essential to understanding the mechanism of regulation of membrane traffic of the transporter. Here, we describe cell population–based assays to measure the steady‐state levels of GLUT4 at the cell surface, as well as to separately measure the rates of GLUT4 endocytosis and endocytosis. Curr. Protoc. Cell Biol. 46:15.15.1‐15.15.19.


American Journal of Physiology-endocrinology and Metabolism | 2014

Ca2+ signals promote GLUT4 exocytosis and reduce its endocytosis in muscle cells

Qing Li; Xiaocui Zhu; Shuhei Ishikura; Da Zhang; Jing Gao; Yi Sun; Ariel Contreras-Ferrat; Kevin P. Foley; Sergio Lavandero; Zhi Yao; Philip J. Bilan; Amira Klip; Wenyan Niu

Elevating cytosolic Ca(2+) stimulates glucose uptake in skeletal muscle, but how Ca(2+) affects intracellular traffic of GLUT4 is unknown. In tissue, changes in Ca(2+) leading to contraction preclude analysis of the impact of individual, Ca(2+)-derived signals. In L6 muscle cells stably expressing GLUT4myc, the Ca(2+) ionophore ionomycin raised cytosolic Ca(2+) and caused a gain in cell surface GLUT4myc. Extra- and intracellular Ca(2+) chelators (EGTA, BAPTA-AM) reversed this response. Ionomycin activated calcium calmodulin kinase II (CaMKII), AMPK, and PKCs, but not Akt. Silencing CaMKIIδ or AMPKα1/α2 partly reduced the ionomycin-induced gain in surface GLUT4myc, as did peptidic or small molecule inhibitors of CaMKII (CN21) and AMPK (Compound C). Compared with the conventional isoenzyme PKC inhibitor Gö6976, the conventional plus novel PKC inhibitor Gö6983 lowered the ionomycin-induced gain in cell surface GLUT4myc. Ionomycin stimulated GLUT4myc exocytosis and inhibited its endocytosis in live cells. siRNA-mediated knockdown of CaMKIIδ or AMPKα1/α2 partly reversed ionomycin-induced GLUT4myc exocytosis but did not prevent its reduced endocytosis. Compared with Gö6976, Gö6983 markedly reversed the slowing of GLUT4myc endocytosis triggered by ionomycin. In summary, rapid Ca(2+) influx into muscle cells accelerates GLUT4myc exocytosis while slowing GLUT4myc endocytosis. CaMKIIδ and AMPK stimulate GLUT4myc exocytosis, whereas novel PKCs reduce endocytosis. These results identify how Ca(2+)-activated signals selectively regulate GLUT4 exocytosis and endocytosis in muscle cells.


PLOS ONE | 2013

Zfat-Deficiency Results in a Loss of CD3ζ Phosphorylation with Dysregulation of ERK and Egr Activities Leading to Impaired Positive Selection

Masahiro Ogawa; Tadashi Okamura; Shuhei Ishikura; Keiko Doi; Hiroshi Matsuzaki; Yoko Tanaka; Takeharu Ota; Kunihiro Hayakawa; Harumi Suzuki; Toshiyuki Tsunoda; Takehiko Sasazuki; Senji Shirasawa

The human ZFAT gene was originally identified as a susceptibility gene for autoimmune thyroid disease. Mouse Zfat is a critical transcriptional regulator for primitive hematopoiesis and required for peripheral T cell homeostasis. However, its physiological roles in T cell development remain poorly understood. Here, we generated Zfat f/f-LckCre mice and demonstrated that T cell-specific Zfat-deletion in Zfat f/f-LckCre mice resulted in a reduction in the number of CD4+CD8+double-positive (DP) cells, CD4+single positive cells and CD8+single positive cells. Indeed, in Zfat f/f-LckCre DP cells, positive selection was severely impaired. Defects of positive selection in Zfat-deficient thymocytes were not restored in the presence of the exogenous TCR by using TCR-transgenic mice. Furthermore, Zfat-deficient DP cells showed a loss of CD3ζ phosphorylation in response to T cell antigen receptor (TCR)-stimulation concomitant with dysregulation of extracellular signal-related kinase (ERK) and early growth response protein (Egr) activities. These results demonstrate that Zfat is required for proper regulation of the TCR-proximal signalings, and is a crucial molecule for positive selection through ERK and Egr activities, thus suggesting that a full understanding of the precise molecular mechanisms of Zfat will provide deeper insight into T cell development and immune regulation.


Journal of Biological Chemistry | 2016

The Nuclear Zinc Finger Protein Zfat Maintains FoxO1 Protein Levels in Peripheral T Cells by Regulating the Activities of Autophagy and the Akt Signaling Pathway

Shuhei Ishikura; Yuri Iwaihara; Yoko Tanaka; Hao Luo; Kensuke Nishi; Keiko Doi; Midori Koyanagi; Tadashi Okamura; Toshiyuki Tsunoda; Senji Shirasawa

Forkhead box O1 (FoxO1) is a key molecule for the development and functions of peripheral T cells. However, the precise mechanisms regulating FoxO1 expression in peripheral T cells remain elusive. We previously reported that Zfatf/f-CD4Cre mice showed a marked decline in FoxO1 protein levels in peripheral T cells, partially through proteasomal degradation. Here we have identified the precise mechanisms, apart from proteasome-mediated degradation, of the decreased FoxO1 levels in Zfat-deficient T cells. First, we confirmed that tamoxifen-inducible deletion of Zfat in Zfatf/f-CreERT2 mice coincidently decreases FoxO1 protein levels in peripheral T cells, indicating that Zfat is essential for maintaining FoxO1 levels in these cells. Although the proteasome-specific inhibitors lactacystin and epoxomicin only moderately increase FoxO1 protein levels, the inhibitors of lysosomal proteolysis bafilomycin A1 and chloroquine restore the decreased FoxO1 levels in Zfat-deficient T cells to levels comparable with those in control cells. Furthermore, Zfat-deficient T cells show increased numbers of autophagosomes and decreased levels of p62 protein, together indicating that Zfat deficiency promotes lysosomal FoxO1 degradation through autophagy. In addition, Zfat deficiency increases the phosphorylation levels of Thr-308 and Ser-473 of Akt and the relative amounts of cytoplasmic to nuclear FoxO1 protein levels, indicating that Zfat deficiency causes Akt activation, leading to nuclear exclusion of FoxO1. Our findings have demonstrated a novel role of Zfat in maintaining FoxO1 protein levels in peripheral T cells by regulating the activities of autophagy and the Akt signaling pathway.


Journal of Cellular Biochemistry | 2015

Zfat‐Deficient CD4+CD8+ Double‐Positive Thymocytes Are Susceptible to Apoptosis With Deregulated Activation of p38 and JNK

Shuhei Ishikura; Masahiro Ogawa; Keiko Doi; Hiroshi Matsuzaki; Yuri Iwaihara; Yoko Tanaka; Toshiyuki Tsunoda; Hiromasa Hideshima; Tadashi Okamura; Senji Shirasawa

Zfat, which is a nuclear protein harboring an AT‐hook domain and 18‐repeats of C2H2 zinc‐finger motif, is highly expressed in immune‐related tissues, including the thymus and spleen. T cell specific deletion of the Zfat gene by crossing Zfatf/f mice with LckCre mice yields a significant reduction in the number of CD4+CD8+ double‐positive (DP) thymocytes. However, physiological role for Zfat in T cell development in the thymus remains unknown. Here, we found that Zfat‐deficient DP thymocytes in Zfatf/f‐LckCre mice were susceptible to apoptosis both at an unstimulated state and in response to T cell receptor (TCR)‐stimulation. The phosphorylation levels of p38 and JNK were elevated in Zfat‐deficient thymocytes at an unstimulated state with an enhanced phosphorylation of ATF2 and with an over‐expression of Gadd45α⋅ On the other hand, the activation of JNK in the Zfat‐deficient thymocytes, but not p38, was strengthened and prolonged in response to TCR‐stimulation. All these results demonstrate that Zfat critically participates in the development of DP thymocytes through regulating the activities of p38 and JNK. J. Cell. Biochem. 116: 149–157, 2015.

Collaboration


Dive into the Shuhei Ishikura's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge