Shuhei Kameya
Nippon Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuhei Kameya.
Molecular and Cellular Neuroscience | 2005
Yongsuk Lee; Shuhei Kameya; Gregory A. Cox; Jennifer W. Hsu; Wanda L. Hicks; Terry P. Maddatu; Richard S. Smith; Jürgen K. Naggert; Neal S. Peachey; Patsy M. Nishina
Here we demonstrate previously unreported ocular defects in mice homozygous for a new allele of the Large gene, veils, and for Large(myd) mice. Clinically, vitreal fibroplasia and retinal vessel tortuosity and fluorescein leakage are observed. These vascular defects may be due to the extreme disorganization of the astrocytic template on which endothelial cells migrate in the retina. Abnormal electroretinograms recorded from Large(vls) or Large(myd) mice are accompanied by disorganization of the outer plexiform layer (OPL) with a dramatic reduction in the number of synaptic complexes. In both mutants, the internal limiting membrane (ILM) is disrupted with ectopic cells in the vitreous. Interestingly, while all components of the dystrophin glycoprotein complex are present at reduced levels in the OPL, they were absent in the ILM of affected mice. Finally, hypoglycosylation of alpha-dystroglycan previously implicated in muscle and brain defects is also observed in the retina and may contribute to the ocular abnormalities.
Journal of Cell Biology | 2002
Yukio Hosaka; Toshifumi Yokota; Yuko Miyagoe-Suzuki; Katsutoshi Yuasa; Michihiro Imamura; Ryoichi Matsuda; Takaaki Ikemoto; Shuhei Kameya; Shin Takeda
α1-Syntrophin is a member of the family of dystrophin-associated proteins; it has been shown to recruit neuronal nitric oxide synthase and the water channel aquaporin-4 to the sarcolemma by its PSD-95/SAP-90, Discs-large, ZO-1 homologous domain. To examine the role of α1-syntrophin in muscle regeneration, we injected cardiotoxin into the tibialis anterior muscles of α1-syntrophin–null (α1syn−/−) mice. After the treatment, α1syn−/− muscles displayed remarkable hypertrophy and extensive fiber splitting compared with wild-type regenerating muscles, although the untreated muscles of the mutant mice showed no gross histological change. In the hypertrophied muscles of the mutant mice, the level of insulin-like growth factor-1 transcripts was highly elevated. Interestingly, in an early stage of the regeneration process, α1syn−/− mice showed remarkably deranged neuromuscular junctions (NMJs), accompanied by impaired ability to exercise. The contractile forces were reduced in α1syn−/− regenerating muscles. Our results suggest that the lack of α1-syntrophin might be responsible in part for the muscle hypertrophy, abnormal synapse formation at NMJs, and reduced force generation during regeneration of dystrophin-deficient muscle, all of which are typically observed in the early stages of Duchenne muscular dystrophy patients.
BioMed Research International | 2013
Kiyoko Gocho; Sachiko Kikuchi; Takenori Kabuto; Shuhei Kameya; Kei Shinoda; Atsushi Mizota; Kunihiko Yamaki; Hiroshi Takahashi
The purpose of this study was to investigate the characteristics of microcystic macular edema (MME) determined from the en face images obtained by an adaptive optics (AO) fundus camera in patients with autosomal dominant optic atrophy (ADOA) and to try to determine the mechanisms underlying the degeneration of the inner retinal cells and RNFL by using the advantage of AO. Six patients from 4 families with ADOA underwent detailed ophthalmic examinations including spectral domain optical coherence tomography (SD-OCT). Mutational screening of all coding and flanking intron sequences of the OPA1 gene was performed by DNA sequencing. SD-OCT showed a severe reduction in the retinal nerve fiber layer (RNFL) thickness in all patients. A new splicing defect and two new frameshift mutations with premature termination of the Opa1 protein were identified in three families. A reported nonsense mutation was identified in one family. SD-OCT of one patient showed MME in the inner nuclear layer (INL) of the retina. AO images showed microcysts in the en face images of the INL. Our data indicate that AO is a useful method to identify MME in neurodegenerative diseases and may also help determine the mechanisms underlying the degeneration of the inner retinal cells and RNFL.
Molecular and Cellular Neuroscience | 2011
H. Takahashi; Hironori Kanesaki; Tsutomu Igarashi; Shuhei Kameya; Kunihiko Yamaki; Atsushi Mizota; Akira Kudo; Yuko Miyagoe-Suzuki; Shin'ichi Takeda; Hiroshi Takahashi
Protein O-linked mannose beta1, 2-N-acetylglucosaminyltransferase 1 (POMGnT1) is an enzyme that catalyzes the transfer of N-acetylglucosamine to O-mannose of glycoproteins. Alpha-dystroglycan, a substrate of POMGnT1, is concentrated around the blood vessels, in the outer plexiform layer (OPL), and in the inner limiting membrane (ILM) of the retina. Mutations of the POMGnT1 gene in humans cause muscle-eye-brain (MEB) disease. Several ocular abnormalities including retinal dysplasia, ERG abnormalities, and retinal detachments have been reported in patients with MEB. We have analyzed the eyes of POMGnT1-deficient mice, generated by standard gene targeting technique, to study the retinal abnormalities. Clinical examination of adult mutant mice revealed a high incidence (81% by 12-months-of-age) of retinal detachments. Sheathing of the retinal vessels and the presence of ectopic fibrous tissues around the optic nerve head were also found. Histological examinations showed focal retinal detachment associated with GFAP immunopositivity. The ILM of the mutant mice was disrupted with ectopic cells near the disruptions. The expression of Dp71, a shorter isoform of dystrophin, was severely reduced in the ILM and around retinal blood vessels of POMGnT1-deficient mice. The expression of Dp427, Dp260, Dp140 were also reduced in the OPL of the mutant mice. Electroretinographic (ERG) analyses showed reduced a- and b-wave amplitudes. Examinations of flat mounts revealed abnormal vascular network associated with highly irregular astrocytic processes. In addition, ER-TR7-positive fibrous tissue was found closely associated with reactive astrocytes especially around the optic nerve head. Our results suggest that altered glycosylation of alpha-DG may be responsible for the reactive gliosis and reticular fibrosis in the retina, and the subsequent developments of retinal dysplasia, abnormal ERGs, and retinal detachment in the mutant mice.
Journal of Ophthalmology | 2014
Kiyoko Gocho; Shuhei Kameya; Keiichiro Akeo; Sachiko Kikuchi; Ayumi Usui; Kunihiko Yamaki; Takaaki Hayashi; Hiroshi Tsuneoka; Atsushi Mizota; Hiroshi Takahashi
The purpose of this study was to determine the retinal morphology of eyes with Bietti crystalline dystrophy (BCD) associated with a CYP4V2 mutation using high-resolution imaging techniques. Three subjects with BCD underwent detailed ophthalmic examinations. High-resolution fundus images were obtained with an adaptive optics (AO) fundus camera. A common homozygous mutation was detected in the three patients. Funduscopic examination of the three patients revealed the presence of crystalline deposits in the retina, and all of the crystalline deposits were also detected in the infrared (IR) images. The crystals observed in the IR images were seen as bright reflective plaques located on the RPE layer in the SD-OCT images. The clusters of hyperreflective signals in the AO images corresponded to the crystals in the IR images. High-magnification AO images revealed that the clusters of hyperreflective signals consisted of circular spots that are similar to the signals of cone photoreceptors. Most of these circular spots were detected in healthy areas in the FAF images. There is a possibility that circular spots observed by AO are residual cone photoreceptors located over the crystals.
Investigative Ophthalmology & Visual Science | 2016
Kaoru Fujinami; Shuhei Kameya; Sachiko Kikuchi; Shinji Ueno; Mineo Kondo; Takaaki Hayashi; Kei Shinoda; Shigeki Machida; Kazuki Kuniyoshi; Yuichi Kawamura; Masakazu Akahori; Kazutoshi Yoshitake; Satoshi Katagiri; Ayami Nakanishi; Hiroyuki Sakuramoto; Yoko Ozawa; Kazuo Tsubota; Kunihiko Yamaki; Atsushi Mizota; Hiroko Terasaki; Yozo Miyake; Takeshi Iwata; Kazushige Tsunoda
PURPOSE To determine the clinical and genetic characteristics of Japanese patients with occult macular dystrophy (OMD) in a nationwide multicenter study. METHODS Twenty-three patients from 21 families with clinically diagnosed OMD were studied at 10 institutions throughout Japan. Ophthalmologic examinations including spectral-domain optic coherence tomography were performed. Patients were classified into two phenotype groups: a classical group having both blurred ellipsoid zone and absence of interdigitation zone of the photoreceptors, and a nonclassical group lacking at least one of these two features. Whole-exome sequencing, direct sequencing, and in silico molecular analysis were performed to detect the pathogenic RP1L1 variants. Statistical associations between the phenotype and genotypes based on the presence of pathogenic RP1L1 variants were investigated. RESULTS There were 12 families with the classical findings and 9 families with the nonclassical findings. Nine pathogenic RP1L1 missense variants were identified in 12 families (57%) including three reported variants, namely, p.R45W, p.S1199C, and p.G1200A, and six novel variants, p.G221R, p.T1194M, p.T1196I, p.G1200D, p.G1200V, and p.V1201G. The pathogenic missense variants in seven families (33%) were located between amino acid numbers 1196 and 1201. A significant association was found between the photoreceptor microstructural phenotypes and molecular genotypes. CONCLUSIONS The spectrum of the morphologic phenotypes and pathogenic RP1L1 variants was documented in a well-characterized Japanese cohort with OMD. A unique motif including six amino acids (1196-1201) downstream of the doublecortin domain could be a hot spot for RP1L1 pathogenic variants. The significant association of the morphologic phenotypes and genotypes indicates that there are two types of pathophysiology underlying the occult macular dysfunction syndrome: a hereditary OMD with the classical phenotype (Miyakes disease), and a nonhereditary OMD-like syndrome with progressive occult maculopathy.
Journal of Muscle Research and Cell Motility | 2001
Sachiko Hoshino; Norio Ohkoshi; Akiko Ishii; Shuhei Kameya; Shin'ichi Takeda; Shin'ichi Shoji
The expression of dystrophin and α1-syntrophin in rat tibialis anterior muscles were evaluated during a cycle of regeneration after myonecrosis induced by the injection of cardiotoxin. Immunohistochemical studies were performed in cryosections of muscles on days 1, 3, 5, 7, 10, 14, 21 and 28 after injection of cardiotoxin. Western blot analysis was also examined in muscle on days 1, 3, 5, 7, 10, 14, 21 and 28. In immunohistochemical studies, dystrophin was stained weakly at the sarcolemma of some regenerating muscle fibers on day 3, and by day 10 it was stained strongly on almost all regenerating muscle fibers. α1-syntrophin was stained weakly at the sarcolemma of some regenerating fibers on day 5, and by day 14 it was detected on all regenerating muscle fibers. In Western blot analysis, dystrophin (DYS1) and α1-syntrophin (α1S) were completely absent on day 1. Re-expression of DYS1 and α1S was visible by day 5 and accelerated thereafter. The Western blots of DYS1 and α1S were densitometrically analyzed on each day. The protein levels on each day were converted to the percentage of the protein level on day 28, which was taken as 100%. From the sequential line based on these data, the following results were obtained on the chronological course of DYS1 and α1S. DYS1: 25% of the protein level on day 28 was reached by 3.5 days, 50% was reached by 5.3 days, and 90% was reached by 6.9 days. α1S: 25% of the protein level on day 28 was reached by 4.6 days, 50% was reached by 6.0 days, and 90% was reached by 12.5 days. In this study, DYS1 regenerated earlier than α1S at the sarcolemma of regenerating muscle fibers.
Journal of Clinical Microbiology | 2001
Shuhei Kameya; Masatoshi Ohkoshi; Kunihiko Yamaki; Shozo Sakuragi
ABSTRACT We tested 15 adenovirus (Ad)-positive patients involved in a case of nosocomial spread of keratoconjunctivitis. A neutralization test, PCR-restriction fragment length polymorphism analysis, and sequencing of the hypervariable regions of the hexons were performed in order to identify the type of Ad involved. The serotype of the Ad was not identical to any published Ad sequence by either method.
BioMed Research International | 2015
Sachiko Kikuchi; Shuhei Kameya; Kiyoko Gocho; Said El Shamieh; Keiichiro Akeo; Yuko Sugawara; Kunihiko Yamaki; Christina Zeitz; Isabelle Audo; Hiroshi Takahashi
The purpose of this study was to determine whether an autosomal recessive cone dystrophy was caused by a homozygous RP1L1 mutation. A family including one subject affected with cone dystrophy and four unaffected members without evidence of consanguinity underwent detailed ophthalmic evaluations. The ellipsoid and interdigitation zones on the spectral-domain optical coherence tomography images were disorganized in the proband. The proband had a reduced amplitude of cone and flicker full-field electroretinograms (ERGs). Focal macular ERGs and multifocal ERGs were severely reduced in the proband. A homozygous RP1L1 mutation (c.3628T>C, p.S1210P) was identified in the proband. Family members who were heterozygous for the p.S1210P mutation had normal visual acuity and normal results of clinical evaluations. To investigate other putative pathogenic variant(s), a next-generation sequencing (NGS) approach was applied to the proband. NGS identified missense changes in the heterozygous state of the PCDH15, RPGRIP1, and GPR98 genes. None of these variants cosegregated with the phenotype and were predicted to be benign reinforcing the putative pathogenicity of the RP1L1 homozygous mutation. The AO images showed a severe reduction of the cone density in the proband. Our findings indicate that a homozygous p.S1210P exchange in the RP1L1 gene can cause cone dystrophy.
Documenta Ophthalmologica | 2016
Daiki Kubota; Kiyoko Gocho; Keiichiro Akeo; Sachiko Kikuchi; Michitaka Sugahara; Celso Soiti Matsumoto; Kei Shinoda; Atsushi Mizota; Kunihiko Yamaki; Hiroshi Takahashi; Shuhei Kameya
PurposeTo describe the clinical and genetic findings in a patient with autosomal recessive bestrophinopathy (ARB) and his healthy parents.MethodsThe patient and his healthy non-consanguineous parents underwent detailed ophthalmic evaluations including electro-oculography (EOG), spectral-domain optical coherence tomography (SD-OCT), and fundus autofluorescence (FAF) imaging. Mutation analysis of the BEST1 gene was performed by Sanger sequencing.ResultsThe FAF images showed multiple spots of increased autofluorescence, and the sites of these spots corresponded to the yellowish deposits detected by ophthalmoscopy. SD-OCT showed cystoid macular changes and a shallow serous macular detachment. The Arden ratio of the EOG was markedly reduced to 1.1 in both eyes. Genetic analysis of the proband detected two sequence variants of the BEST1 gene in the heterozygous state: a novel variant c.717delG, p.V239VfsX2 and an already described c.763C>T, p.R255W variant associated with Best vitelliform macular dystrophy and ARB. The proband’s father carried the c.717delG, p.V239VfsX2 variant in the heterozygous state, and the mother carried the c.763C>T, p.R255W variant in the heterozygous state. The parents who were heterozygous for the BEST1 variants had normal visual acuity, EOG, SD-OCT, and FAF images.ConclusionsIn a truncating BEST1 mutation, the phenotype associated with ARB is most likely due to a marked decrease in the expression of BEST1 promoted by the nonsense-mediated decay surveillance mechanism, and it may depend on the position of the premature termination of the codon created.