Shuhong Fang
Nankai University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shuhong Fang.
Environmental Science & Technology | 2014
Shuhong Fang; Xinwei Chen; Shuyan Zhao; Yifeng Zhang; Weiwei Jiang; Liping Yang; Lingyan Zhu
Biomagnification of perfluoroalkyl substances (PFASs) are well studied in marine food webs, but related information in fresh water ecosystem and knowledge on fractionation of their isomers along the food web are limited. The distribution, bioaccumulation, magnification, and isomer fractionation of PFASs were investigated in a food web of Taihu Lake, China. Perfluorooctanesulfonate (PFOS) and perfluorocarboxylates (PFCAs) with longer carbon chain lengths, such as perfluorodecanoate (PFDA) and perfluoroundecanoate (PFUnA), were predominant in organisms, while perfluorohexanoate (PFHxA) and perfluorooctanoate (∑PFOA) contributed more in the water phase. The consistent profile signature of PFOA isomers in water phase with 3M electrochemical fluorination (ECF) products suggests that ECF production of PFOA still exists in China. Linear proportions of PFOA, PFOS and perfluorooctane sulfonamide (PFOSA) in the biota were in the range of 91.9-100%, 78.6-95.5%, and 72.2-95.5%, respectively, indicating preferential bioaccumulation of linear isomers in biota. Trophic magnification factors (TMFs) were estimated for PFDA (2.43), perfluorododecanoate (PFDoA) (2.68) and PFOS (3.46) when all biota were included, suggesting that PFOS and long-chained PFCAs are biomagnified in the fresh water food web. The TMF of PFOS isomers descended in the order: n-PFOS (3.86) > 3+5m-PFOS (3.35) > 4m-PFOS (3.32) > 1m-PFOS (2.92) > m2-PFOS (2.67) > iso-PFOS (2.59), which is roughly identical to their elution order on a FluoroSep-RP Octyl column, suggesting that hydrophobicity may be an important contributor for isomer discrimination in biota.
Environmental Pollution | 2014
Shuyan Zhao; Shuhong Fang; Lingyan Zhu; Li Liu; Zhengtao Liu; Yahui Zhang
Wheat and earthworms were exposed individually and together to soils contaminated with 11 perfluoroalkyl substances (PFASs). Wheat accumulated PFASs from soil with root concentration factors and bioconcentration factors that decreased as the number of perfluorinated carbons in the molecule increased. Earthworms accumulated PFASs from soil with biota-to-soil accumulation factors that increased with the number of carbons. Translocation factors (TF) of perfluorinated carboxylates (PFCAs) in wheat peaked at perfluorohexanoic acid and decreased significantly as the number of carbons increased or decreased. Perfluorohexane sulfonate produced the greatest TF of the three perfluorinated sulfonates (PFSAs) examined. Wheat increased the bioaccumulation of all 11 PFASs in earthworms and earthworms increased the bioaccumulation in wheat of PFCAs containing seven or less perfluorinated carbons, decreased bioaccumulation of PFCAs with more than seven carbons, and decreased bioaccumulation of PFSAs. In general, the co-presence of wheat and earthworms enhanced the bioavailability of PFASs in soil.
Water Research | 2015
Xinwei Chen; Lingyan Zhu; Xiaoyu Pan; Shuhong Fang; Yifeng Zhang; Liping Yang
The occurrence and distribution of eleven perfluoroalkyl substances (PFASs) and the isomers of perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) were investigated in water dissolved phase, sediment and suspended particulate matter (SPM) in two typical watersheds in China: Liao River Basin and Taihu Lake. The total concentrations of the PFASs in the dissolved phase were 44.4-781 ng/L in Liao River with high contribution of perfluorobutane sulfonate (PFBS) (75.7%) and PFOA (9.86%). The ∑PFASs in the dissolved phase in Taihu Lake was 17.2-94.4 ng/L with PFOA (39.8%), perfluorohexanoate (PFHxA) (30.1%) and PFOS (16.8%) as the dominant PFASs. The log Koc values of the PFASs in both SPM and sediment increased with increasing the perfluorinated carbon chain length. In Liao River Basin, the long chain perfluorocarboxylates (C10-12) bound with SPM contributed >30% to the total amount in water, suggesting that SPM could not be ignored when the environmental load of long chain PFASs in water was assessed. For the isomers of PFOA, PFOS and PFOSA, the linear isomers always displayed higher partition coefficients on particulate phases than the branched ones. An established isomer-profiling technique was applied to assess the relative contributions of various industrial origins for PFOA. In Liao River, when SPM was included in the water samples, there were contributions of PFOA from electrochemical fluorination (ECF) (∼55%), linear telomer (∼41%) and isopropyl telomer (∼4%) sources. While, the results based on the dissolved phase alone indicated more contribution of ECF (∼70%) source and lower contribution from linear telomer (∼26%) source. The discrepancy suggests that omitting SPM from water samples might lead to misunderstanding on the industrial origins of PFOA. In Taihu Lake, the isomer profile of PFOA was influenced mainly by ECF (∼88%) and partially by linear-telomer (∼12%) sources.
Environment International | 2014
Yifeng Zhang; Weiwei Jiang; Shuhong Fang; Lingyan Zhu; Jimin Deng
A total of 100 serum samples from 50 new couples (none of the females in this study has ever been pregnant) in Tianjin, North China, were analyzed for eleven perfluoroalkyl acids (PFAAs) with isomer-specific method. Among all samples, total perfluorooctanesulfonate (∑PFOS, mean 11.3 ng/mL) was predominant followed by total perfluorooctanoate (∑PFOA, 2.95 ng/mL), perfluorodecanoate (PFDA, 1.17 ng/mL), perfluorononanoate (PFNA, 0.93 ng/mL) and perfluorohexanesulfonate (PFHxS, 0.67 ng/mL). The mean concentrations of ∑PFOS and PFHxS in males (14.2 and 0.89 ng/mL) were significantly higher (p=0.001) than in females (8.36 and 0.45 ng/mL). No statistical difference between genders was observed for the other PFAAs. This suggests that menstruation is one important elimination pathway for ∑PFOS and PFHxS in females. Linear PFOA was the dominant isomer with mean proportion of 99.7%, suggesting that telomeric PFOA (and its precursors), which contains almost pure linear isomer, might be the dominant exposure source of PFOA in Tianjin. On average, the proportion of linear PFOS (n-PFOS) was 59.2% of ∑PFOS, which was lower than that in technical PFOS products (ca. 70% linear). Except perfluoroisopropyl PFOS, all the other monomethyl branched PFOS isomers were enriched in human serum compared to the commercial products, suggesting the monomethyl branched PFOS precursors were preferentially biotransformed in humans.
Environmental Science & Technology | 2015
Meng Chen; Liwen Qiang; Xiaoyu Pan; Shuhong Fang; Yuwei Han; Lingyan Zhu
Biotransformation of PFOS-precursors (PreFOS) may contribute significantly to the level of perfluorooctanesulfonate (PFOS) in the environment. Perfluorooctane sulfonamide (PFOSA) is one of the major intermediates of higher molecular weight PreFOS. Its further degradation to PFOS could be isomer specific and thereby explain unexpected high percentages of branched (Br-) PFOS isomers observed in wildlife. In this study, isomeric degradation of PFOSA was concomitantly investigated by in vivo and in vitro tests using common carp as an animal model. In the in vivo tests branched isomers of PFOSA and PFOS were eliminated faster than the corresponding linear (n-) isomers, leading to enrichment of n-PFOSA in the fish. In contrast, Br-PFOS was enriched in the fish, suggesting that Br-PFOSA isomers were preferentially metabolized to Br-PFOS over n-PFOSA. This was confirmed by the in vitro test. The exception was 1m-PFOSA, which could be the most difficult to be metabolized due to its α-branched structure, resulting in the deficiency of 1m-PFOS in the fish. The in vitro tests indicated that the metabolism mainly took place in the fish liver instead of its kidney, and it was mainly a Phase I reaction. The results may help to explain the special PFOS isomer profile observed in wildlife.
Journal of Environmental Sciences-china | 2014
Lixia Zhao; Yifeng Zhang; Shuhong Fang; Lingyan Zhu; Zhengtao Liu
The sorption and desorption behaviors of two perfluoroalkane sulfonates (PFSAs), including perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) on two humic acids (HAs) and humin (HM), which were extracted from a peat soil, were investigated. The sorption kinetics and isotherms showed that the sorption of PFOS on the humic substances (HSs) was much higher than PFHxS. For the same PFSA compound, the sorption on HSs followed the order of HM>HA2>HA1. These suggest that hydrophobic interaction plays a key role in the sorption of PFSAs on HSs. The sorption capacities of PFSAs on HSs were significantly related to their aliphaticity, but negatively correlated to aromatic carbons, indicating the importance of aliphatic groups in the sorption of PFSAs. Compared to PFOS, PFHxS displayed distinct desorption hysteresis, probably due to irreversible pore deformation after sorption of PFHxS. The sorption of the two PFSAs on HSs decreased with an increase in pH in the solution. This is ascribed to the electrostatic interaction and hydrogen bonding at lower pH. Hydrophobic interaction might also be stronger at lower pH due to the aggregation of HSs.
Science of The Total Environment | 2016
Shuyan Zhao; Xinxin Ma; Shuhong Fang; Lingyan Zhu
N-ethyl perfluorooctane sulfonamido ethanol (N-EtFOSE) is a typical precursor of perfluorooctane sulfonate (PFOS). In this study, the behaviors of N-EtFOSE in a soil-earthworm system, including biodegradation in soil and bioaccumulation and biotransformation in earthworms (Eisenia fetida) were investigated. N-EtFOSE could be biodegraded in soil and biotransformed in earthworms to several metabolites, including n-ethylperfluorooctane sulfonamide acetate (N-EtFOSAA), perfluorooctane sulfonamide acetate (FOSAA), perfluorooctane sulfonamide (FOSA) and PFOS, with N-EtFOSAA as the predominant intermediate and PFOS as the terminal product in both soil and earthworm. The uptake rate coefficients (ku, 0.746 goc gdw(-1)d(-1)), degradation rate constant in soil (k0, 0.138 d(-1)) and the biota-to-soil accumulation factor (BSAF, 0.523 goc gdw(-1)) of N-EtFOSE were estimated. For N-EtFOSE, N-EtFOSAA, FOSAA, FOSA and PFOS, their loss rate constants in earthworms were in the range of 0.467-30.2 (α) and 0.006-0.415 (β) d(-1), respectively. The results provided important information about the behaviors of N-EtFOSE in the soil-earthworm system.
Nanotoxicology | 2016
Liwen Qiang; Xiaoyu Pan; Lingyan Zhu; Shuhong Fang; Shengyan Tian
Abstract Nano-titanium dioxide (nano-TiO2) is one of the most universal engineered nano-materials while perfluorooctanesulfonate (PFOS) is a typical new persistent organic pollutant. They are widely used and present in aquatic environment. In this study, a novel semi-static multilayer microcosm was setup to investigate the impacts of nano-TiO2 on PFOS bioaccumulation in fish species [Danio rerio (D. rerio), Ctenopharyngodon idella (C. idella), Hypostomus plecostomus (H. plecostomus)] living in different vertical layers. As a result of aggregation and deposition, the concentration of TiO2 increased from upper to bottom layers in the water column. Concomitantly, due to adsorption of PFOS on the nano-TiO2 particles, PFOS also displayed an increasing trend from upper to bottom layer. Owing to ingestion of the TiO2–PFOS complexes, more PFOS was taken-up by fish. With the aid of intestinal fluid, PFOS was readily released from TiO2 particles and absorbed by fish. As a result, accumulation of PFOS in whole fish was facilitated and the bioaccumulation factors of PFOS in D. rerio, C. idella and H. plecostomus were 3.01, 2.42 and 1.11 times of that in the groups without TiO2. However, TiO2 aggregates were too large to penetrate biological membranes to participate body circulation, and no significant accumulation of TiO2 was observed in fish muscle. The results suggested that the ecological risk of PFOS could be enhanced due to the presence of nano-TiO2 in water.
Environmental Toxicology and Chemistry | 2016
Shuhong Fang; Yifeng Zhang; Shuyan Zhao; Liwen Qiang; Meng Chen; Lingyan Zhu
Carp (Cyprinus carpio) were exposed to perfluoroalkyl acids (PFAAs) including perfluorooctane sulfonate (PFOS) isomers in an artificially contaminated sediment/water microcosm. The uptake constant of PFAAs increased with increasing carbon chain length, whereas the elimination coefficient displayed the opposite trend, suggesting that carbon chain length plays an important role in the bioaccumulation of PFAAs. When the contribution of suspended particulate matter was taken into account, the bioaccumulation factors (BAFs) became lower (3.61-600 L/kg) compared with BAFs derived from only considering the absorption from free PFAAs in water (3.85-97000 L/kg). The results indicate that suspended particulate matter in water constitutes an important source of exposure for aquatic organisms to long-chain PFAAs. Linear (n-)PFOS was preferentially accumulated compared with branched isomers in carp. Among the branched isomers, 1m-PFOS displayed the greatest bioaccumulation, whereas m2 -PFOS had the lowest. Linear PFOS displayed greater partitioning ability from blood to other tissues over branched PFOS (br-PFOS) isomers, leading to a relatively lower n-PFOS proportion in blood. In summary, suspended particulate matter made a contribution to the accumulation of long-chain PFAAs in aquatic organisms, and n-PFOS was preferentially accumulated compared with br-PFOS isomers. Environ Toxicol Chem 2016;35:3005-3013.
Environmental Science & Technology | 2012
Shengyan Tian; Lingyan Zhu; Jingna Bian; Shuhong Fang