Shui-Lin Niu
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shui-Lin Niu.
Journal of Molecular Neuroscience | 2001
Burton J. Litman; Shui-Lin Niu; Alla Polozova; Drake C. Mitchell
In order to understand the role of the high levels of docosahexaenoic acid (DHA) in neuronal and retinal tissue, a study of the effect of membrane lipid composition on the visual pathway, a G protein-coupled system, was undertaken. The level of metarhodopsin II (MII) formation was determined to be a function of phospholipid acyl-chain unsaturation, with the highest levels seen in DHA-containing bilayers. Similarly, the rate of coupling of MII to the retinal G protein, Gt, to form a MII-Gt complex, was enhanced in DHA bilayers relative to less unsaturated phospholipids. Complex formation initiates the first stage of amplification in the visual pathway. The activation of the cGMP phosphodiesterase (PDE), the effector enzyme, represents the integrated pathway function. DHA-containing bilayers were found to support PDE levels comparable to those of the rod outer segment (ROS) disk membranes. Inclusion of 30 mol cholesterol in the reconstituted bilayers had an inhibitory effect on each step in the visual pathway studied. Inclusion of cholesterol reduced MII formation and PDE activity and increased the lag time between the appearance of MII and the formation of the MII-Gt complex. However, signaling in DHA bilayers was far less affected by the addition of cholesterol than in bilayers containing less unsaturated phospholipids. These studies point up the importance of DHA acyl chains in promoting optimal function in G protein-coupled signaling pathways. The results reported here suggest that visual and cognitive deficits observed in n-3 deficiency may result from decreased efficiency in related neurotransmitter and visual signaling pathways in the absence of DHA.
Biophysical Journal | 2002
Shui-Lin Niu; Burton J. Litman
Lateral domain or raft formation in biological membranes is often discussed in terms of cholesterol-lipid interactions. Preferential interactions of cholesterol with lipids, varying in headgroup and acyl chain unsaturation, were studied by measuring the partition coefficient for cholesterol in unilamellar vesicles. A novel vesicle-cyclodextrin system was used, which precludes the possibility of cross-contamination between donor-acceptor vesicles or the need to modify one of the vesicle populations. Variation in phospholipid headgroup resulted in cholesterol partitioning in the order of sphingomyelin (SM) > phosphatidylserine > phosphatidylcholine (PC) > phosphatidylenthanolamine (PE), spanning a range of partition DeltaG of -1181 cal/mol to +683 cal/mol for SM and PE, respectively. Among the acyl chains examined, the order of cholesterol partitioning was 18:0(stearic acid),18:1n-9(oleic acid) PC > di18:1n-9PC > di18:1n-12(petroselenic acid) PC > di18:2n-6(linoleic acid) PC > 16:0(palmitic acid),22:6n-3(DHA) PC > di18:3n-3(alpha-linolenic acid) PC > di22:6n-3PC with a range in partition DeltaG of 913 cal/mol. Our results suggest that the large differences observed in cholesterol-lipid interactions contribute to the forces responsible for lateral domain formation in plasma membranes. These differences may also be responsible for the heterogeneous cholesterol distribution in cellular membranes, where cholesterol is highly enriched in plasma membranes and relatively depleted in intracellular membranes.
Journal of Biological Chemistry | 2002
Shui-Lin Niu; Drake C. Mitchell; Burton J. Litman
The effect of cholesterol on rod outer segment disk membrane structure and rhodopsin activation was investigated. Disk membranes with varying cholesterol concentrations were prepared using methyl-β-cyclodextrin as a cholesterol donor or acceptor. Cholesterol exchange followed a simple equilibrium partitioning model with a partition coefficient of 5.2 ± 0.8 in favor of the disk membrane. Reduced cholesterol in disk membranes resulted in a higher proportion of photolyzed rhodopsin being converted to the G protein-activating metarhodopsin II (MII) conformation, whereas enrichment of cholesterol reduced the extent of MII formation. Time-resolved fluorescence anisotropy measurements using 1,6-diphenyl-1,3,5-hexatriene showed that increasing cholesterol reduced membrane acyl chain packing free volume as characterized by the parameter fv . The level of MII formed showed a positive linear correlation with fv over the range of 4 to 38 mol % cholesterol. In addition, the thermal stability of rhodopsin increased with mol % of cholesterol in disk membranes. No evidence was observed for the direct interaction of cholesterol with rhodopsin in either its agonist- or antagonist-bound form. These results indicate that cholesterol mediates the function of the G protein-coupled receptor, rhodopsin, by influencing membrane lipid properties, i.e. reducing acyl chain packing free volume, rather than interacting specifically with rhodopsin.
Journal of Biological Chemistry | 2001
Drake C. Mitchell; Shui-Lin Niu; Burton J. Litman
The role of membrane composition in modulating the rate of G protein-receptor complex formation was examined using rhodopsin and transducin (Gt) as a model system. Metarhodopsin II (MII) and MII-Gt complex formation rates were measured, in the absence of GTP, via flash photolysis for rhodopsin reconstituted in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (18:0,18:1PC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0,22:6PC) bilayers, with and without 30 mol% cholesterol. Variation in bilayer lipid composition altered the lifetime of MII-Gt formation to a greater extent than the lifetime of MII. MII-Gt formation was fastest in 18:0,22:6PC and slowest in 18:0,18:1PC/30 mol% cholesterol. At 37 °C and a Gt to photolyzed rhodopsin ratio of 1:1 in 18:0,22:6PC bilayers, MII-Gt formed with a lifetime of 0.6 ± 0.06 ms, which was not significantly different from the lifetime for MII formation. Incorporation of 30 mol% cholesterol slowed the rate of MII-Gt complex formation by about 400% in 18:0,18:1PC, but by less than 25% in 18:0,22:6PC bilayers. In 18:0,22:6PC, with or without cholesterol, MII-Gt formed rapidly after MII formed. In contrast, cholesterol in 18:0,18:1PC induced a considerable lag time in MII-Gt formation after MII formed. These results demonstrate that membrane composition is a critical factor in determining the temporal response of a G protein-coupled signaling system.
Journal of Biological Chemistry | 2001
Shui-Lin Niu; Drake C. Mitchell; Burton J. Litman
The visual transduction system was used as a model to investigate the effects of membrane lipid composition on receptor-G protein coupling. Rhodopsin was reconstituted into large, unilamellar phospholipid vesicles with varying acyl chain unsaturation, with and without cholesterol. The association constant (K a ) for metarhodopsin II (MII) and transducin (Gt) binding was determined by monitoring MII-Gt complex formation spectrophotometrically. At 20 °C, in pH 7.5 isotonic buffer, the strongest MII-Gtbinding was observed in 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0,22:6PC), whereas the weakest binding was in 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (18:0,18:1PC) with 30 mol% cholesterol. Increasing acyl chain unsaturation from 18:0,18:1PC to 18:0,22:6PC resulted in a 3-fold increase in K a . The inclusion of 30 mol% cholesterol in the membrane reduced K a in both 18:0,22:6PC and 18:0,18:1PC. These findings demonstrate that membrane compositions can alter the signaling cascade by changing protein-protein interactions occurring predominantly in the hydrophilic region of the proteins, external to the lipid bilayer. These findings, if extended to other members of the superfamily of G protein-coupled receptors, suggest that a loss in efficiency of receptor-G protein binding is a contributing factor to the loss of cognitive skills, odor and spatial discrimination, and visual function associated with n-3 fatty acid deficiency.
Lipids | 2003
Drake C. Mitchell; Shui-Lin Niu; Burton J. Litman
The effect of phospholipid acyl chain and cholesterol composition on G protein-coupled signaling was studied in native rod outer segment (ROS) disk and reconstituted membranes by measuring several steps in the visual transduction pathway. The cholesterol content of disk membranes was varied from 4 to 38 mol% cholesterol with methyl-β-cyclodextrin. The visual signal transduction system [rhodopsin, G protein (Gt), and phosphodiesterase (PDE)] was reconstituted with membranes containing various levels of phospholipid acyl chain unsaturation, with and without cholesterol. ROS membranes from rats raised on n−3 fatty acid-deficient and-adequate diets were also studied. The ability of rhodopsin to form the active metarhodopsin II conformation and bind Gt was diminished by a reduction in the level of DHA (22∶6n−3) acyl chains or an increase in membrane cholesterol. DHA acyl chain containing phospholipids minimized the inhibitory effects of cholesterol on the rate of rhodopsin-Gt coupling. The activity of PDE, which is a measure of the integrated signal response, was reduced in membranes lacking or deficient in DHA acyl chains. PDE activity in membranes containing docosapentaenoic acid (DPA, 22∶5n−6) acyl chains, which replace DHA in n−3 fatty acid deficiency, was 50% lower than in DHA-containing membranes. Our results indicate that efficient and rapid propagation of G protein-coupled signaling is optimized by DHA phospholipid acyl chains.
The Journal of Neuroscience | 2005
Huanmian Chen; Henry L. Puhl; Shui-Lin Niu; Drake C. Mitchell; Stephen R. Ikeda
Rad, Gem/Kir, Rem, and Rem2 are members of the Ras-related RGK (Rad, Gem, and Kir) family of small GTP-binding proteins. Heterologous expression of RGK proteins interferes with de novo calcium channel assembly/trafficking and dramatically decreases the amplitude of currents arising from preexisting high-voltage-activated calcium channels. These effects probably result from the direct interaction of RGK proteins with calcium channel β subunits. Among the RGK family, Rem2 is the only member abundantly expressed in neuronal tissues. Here, we examined the ability of Rem2 to modulate endogenous voltage-activated calcium channels in rat sympathetic and dorsal root ganglion neurons. Heterologous expression of Rem2 nearly abolished calcium currents arising from preexisting high-voltage-activated calcium channels without affecting low-voltage-activated calcium channels. Rem2 inhibition of N-type calcium channels required both the Ras homology (core) domain and the polybasic C terminus. Mutation of a putative GTP/Mg2+ binding motif in Rem2 did not affect suppression of calcium currents. Loading neurons with GDP-β-S via the patch pipette did not reverse Rem2-mediated calcium channel inhibition. Finally, [125I]Tyr22-ω-conotoxin GVIA cell surface binding in tsA201 cells stably expressing N-type calcium channels was not altered by Rem2 expression at a time when calcium current was totally abolished. Together, our results support a model in which Rem2 localizes to the plasma membrane via a C-terminal polybasic motif and interacts with calcium channel β subunits in the preassembled N-type channel, thereby forming a nonconducting species.
Biochemistry | 2005
Shui-Lin Niu; Drake C. Mitchell; Burton J. Litman
The consumption of trans fatty acid (TFA) is linked to the elevation of LDL cholesterol and is considered to be a major health risk factor for coronary heart disease. Despite several decades of extensive research on this subject, the underlying mechanism of how TFA modulates serum cholesterol levels remains elusive. In this study, we examined the molecular interaction of TFA-derived phospholipid with cholesterol and the membrane receptor rhodopsin in model membranes. Rhodopsin is a prototypical member of the G-protein coupled receptor family. It has a well-characterized structure and function and serves as a model membrane receptor in this study. Phospholipid-cholesterol affinity was quantified by measuring cholesterol partition coefficients. Phospholipid-receptor interactions were probed by measuring the level of rhodopsin activation. Our study shows that phospholipid derived from TFA had a higher membrane cholesterol affinity than their cis analogues. TFA phospholipid membranes also exhibited a higher acyl chain packing order, which was indicated by the lower acyl chain packing free volume as determined by DPH fluorescence and the higher transition temperature for rhodopsin thermal denaturation. The level of rhodopsin activation was diminished in TFA phospholipids. Since membrane cholesterol level and membrane receptors are involved in the regulation of cholesterol homeostasis, the combination of higher cholesterol content and reduced receptor activation associated with the presence of TFA-phospholipid could be factors contributing to the elevation of LDL cholesterol.
Journal of the American Chemical Society | 2008
Olivier Soubias; Shui-Lin Niu; Drake C. Mitchell; Klaus Gawrisch
The ability of photoactivated rhodopsin to achieve the enzymatically active metarhodopsin II conformation is exquisitely sensitive to bilayer hydrophobic thickness. The sensitivity of rhodopsin to the lipid matrix has been explained by the hydrophobic matching theory, which predicts that lipid bilayers adjust elastically to the hydrophobic length of transmembrane helices. Here, we examined if bilayer thickness adjusts to the length of the protein or if the protein alters its conformation to adapt to the bilayer. Purified bovine rhodopsin was reconstituted into a series of mono-unsaturated phosphatidylcholines with 14-20 carbons per hydrocarbon chain. Changes of hydrocarbon chain length were measured by (2)H NMR, and protein helical content was quantified by synchrotron radiation circular dichroism and conventional circular dichroism. Experiments were conducted on dark-adapted rhodopsin, the photo-intermediates metarhodopsin I/II/III, and opsin. Changes of bilayer thickness upon rhodopsin incorporation and photoactivation were mostly absent. In contrast, the helical content of rhodopsin increased with membrane hydrophobic thickness. Helical content did not change measurably upon photoactivation. The increases of bilayer thickness and helicity of rhodopsin are accompanied by higher metarhodopsin II/metarhodopsin I ratios, faster rates of metarhodopsin II formation, an increase of tryptophan fluorescence, and higher temperatures of rhodopsin denaturation. The data suggest a surprising adaptability of this G protein-coupled membrane receptor to properties of the lipid matrix.
The Journal of Pediatrics | 2003
Drake C. Mitchell; Shui-Lin Niu; Burton J. Litman
OBJECTIVE To assess the effects of n-3 polyunsaturated phospholipid acyl chains on the initial steps in G-protein-coupled signaling. STUDY DESIGN Isolated components of the visual signal transduction system, rhodopsin, G protein (G(t)), and phosphodiesterase (PDE), were reconstituted in membranes containing various levels of n-3 polyunsaturated phospholipid acyl chains. In addition, rod outer segment disk membranes containing these components were purified from rats raised on n-3-deficient and n-3-adequate diets. The conformation change of rhodopsin, coupling of rhodopsin to G(t), and PDE activity were each measured separately. RESULTS The ability of rhodopsin to form the active metarhodopsin II conformation and bind G(t) were both compromised in membranes with reduced levels of n-3 polyunsaturated acyl chains. The activity of PDE, directly related to the integrated cellular response, was reduced in all membranes lacking or deficient in n-3 polyunsaturated acyl chains. PDE activity in membranes containing 22:5n-6 PC was 50% lower than in membranes containing either 22:6n-3 PC or 22:5n-3 PC. CONCLUSIONS The earliest events in G-protein-coupled signaling; receptor conformation change, receptor-G-protein binding, and PDE activity are reduced in membranes lacking n-3 polyunsaturated acyl chains. Efficient and rapid propagation of G-protein-coupled signaling requires polyunsaturated n-3 phospholipid acyl chains.