Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuichi Nagashima is active.

Publication


Featured researches published by Shuichi Nagashima.


Cell Metabolism | 2009

Ablation of Neutral Cholesterol Ester Hydrolase 1 Accelerates Atherosclerosis

Motohiro Sekiya; Jun-ichi Osuga; Shuichi Nagashima; Taichi Ohshiro; Masaki Igarashi; Hiroaki Okazaki; Manabu Takahashi; Fumiko Tazoe; Taeko Wada; Keisuke Ohta; Mikio Takanashi; Masayoshi Kumagai; Makiko Nishi; Satoru Takase; Naoya Yahagi; Hiroaki Yagyu; Ken Ohashi; Ryozo Nagai; Takashi Kadowaki; Yusuke Furukawa; Shun Ishibashi

Cholesterol ester (CE)-laden macrophage foam cells are the hallmark of atherosclerosis, and the hydrolysis of intracellular CE is one of the key steps in foam cell formation. Although hormone-sensitive lipase (LIPE) and cholesterol ester hydrolase (CEH), which is identical to carboxylsterase 1 (CES1, hCE1), were proposed to mediate the neutral CE hydrolase (nCEH) activity in macrophages, recent evidences have suggested the involvement of other enzymes. We have recently reported the identification of a candidate, neutral cholesterol ester hydrolase 1(Nceh1). Here we demonstrate that genetic ablation of Nceh1 promotes foam cell formation and the development of atherosclerosis in mice. We further demonstrate that Nceh1 and Lipe mediate a comparable degree of nCEH activity in macrophages and together account for most of the activity. Mice lacking both Nceh1 and Lipe aggravated atherosclerosis in an additive manner. Thus, Nceh1 is a promising target for the treatment of atherosclerosis.


Circulation Research | 2010

The Critical Role of Neutral Cholesterol Ester Hydrolase 1 in Cholesterol Removal From Human Macrophages

Masaki Igarashi; Jun-ichi Osuga; Hiroshi Uozaki; Motohiro Sekiya; Shuichi Nagashima; Manabu Takahashi; Satoru Takase; Mikio Takanashi; Yongxue Li; Keisuke Ohta; Masayoshi Kumagai; Makiko Nishi; Masakiyo Hosokawa; Christian Fledelius; Poul Jacobsen; Hiroaki Yagyu; Masashi Fukayama; Ryozo Nagai; Takashi Kadowaki; Ken Ohashi; Shun Ishibashi

Rationale: Hydrolysis of intracellular cholesterol ester (CE) is the key step in the reverse cholesterol transport in macrophage foam cells. We have recently shown that neutral cholesterol ester hydrolase (Nceh)1 and hormone-sensitive lipase (Lipe) are key regulators of this process in mouse macrophages. However, it remains unknown which enzyme is critical in human macrophages and atherosclerosis. Objective: We aimed to identify the enzyme responsible for the CE hydrolysis in human macrophages and to determine its expression in human atherosclerosis. Methods and Results: We compared the expression of NCEH1, LIPE, and cholesterol ester hydrolase (CES1) in human monocyte-derived macrophages (HMMs) and examined the effects of inhibition or overexpression of each enzyme in the cholesterol trafficking. The pattern of expression of NCEH1 was similar to that of neutral CE hydrolase activity during the differentiation of HMMs. Overexpression of human NCEH1 increased the hydrolysis of CE, thereby stimulating cholesterol mobilization from THP-1 macrophages. Knockdown of NCEH1 specifically reduced the neutral CE hydrolase activity. Pharmacological inhibition of NCEH1 also increased the cellular CE in HMMs. In contrast, LIPE was barely detectable in HMMs, and its inhibition did not decrease neutral CE hydrolase activity. Neither overexpression nor knockdown of CES1 affected the neutral CE hydrolase activity. NCEH1 was expressed in CD68-positive macrophage foam cells of human atherosclerotic lesions. Conclusions: NCEH1 is expressed in human atheromatous lesions, where it plays a critical role in the hydrolysis of CE in human macrophage foam cells, thereby contributing to the initial part of reverse cholesterol transport in human atherosclerosis.


Obesity | 2010

Regulatory SNP in the RBP4 Gene Modified the Expression in Adipocytes and Associated With BMI

Lkhagvasuren Munkhtulga; Shuichi Nagashima; Kazuhiro Nakayama; Nanami Utsumi; Yoshiko Yanagisawa; Takaya Gotoh; Toshinori Omi; Maki Kumada; Khadbaatar Zolzaya; Tserenkhuu Lkhagvasuren; Yasuo Kagawa; Hiroyuki Fujiwara; Yoshinori Hosoya; Masanobu Hyodo; Hisanaga Horie; Masayuki Kojima; Shun Ishibashi; Sadahiko Iwamoto

Retinol‐binding protein 4 (RBP4) is a recently identified adipokine that was involved in insulin resistance. RBP4 is predominantly expressed from the liver in normal metabolic state to transport retinoids throughout the body, but the exact physiological function and the regulatory mechanisms of adipocyte‐derived RBP4 have not been revealed. We conducted the genetic analysis about metabolic parameters in Japanese and Mongolian; the minor allele carriers of regulatory single‐nucleotide polymorphism (SNP −803G>A) showed significantly higher BMI in Japanese men (P = 0.009) and women (P = 0.017), and in Mongolian women (P = 0.009). Relative quantification of RBP4 transcripts in −803GA heterozygotes showed that the minor allele–linked haplotype‐derived mRNA was significantly more abundant than the transcript from major allele. RBP4 promoter assay in 3T3L1 adipocytes revealed that the minor allele increased the promoter activity double to triple and the administration of 9‐cis‐retinoic acid (RA) and 8‐bromo‐cyclic adenosine monophosphate (8‐Br‐cAMP) enhanced the activity. Multiple alignment analysis of human, mouse, rat, and cattle RBP4 promoter suggested conserved seven transcription factor binding motifs. Electrophoretic mobility shift assay showed the −803G>A SNP modulate the affinity against unidentified DNA‐binding factor, which was assumed to be a suppressive factor. These results collectively suggested that the minor allele of RBP4 regulatory SNP enhanced the expression in adipocytes, which may be associated with the adipogenesis.


Diabetes Research and Clinical Practice | 2010

Distinct association of serum FGF21 or adiponectin levels with clinical parameters in patients with type 2 diabetes

Kazuhiro Eto; Bayasgalan Tumenbayar; Shuichi Nagashima; Fumiko Tazoe; Michiaki Miyamoto; Manabu Takahashi; Akihiko Ando; Kenta Okada; Hiroaki Yagyu; Shun Ishibashi

Fibroblast growth factor 21 (FGF21) has been identified as a novel metabolic regulator. This cross-sectional study was performed to clarify how serum FGF21 levels were associated with clinical parameters in Japanese subjects with type 2 diabetes (n=139). Anthropometric and blood biochemical parameters, uses of drugs for diabetes, hypertension and dyslipidemia were examined regarding associations with fasting serum FGF21 concentrations. FGF21 levels were 6-times higher in those subjects taking fibrates. However, a use of thiazolidinediones did not affect serum FGF21 levels while it induced higher serum adiponectin levels. In univariate analyses, FGF21 levels showed associations with a use of fibrates, triglyceride levels, creatinine levels, waist circumference, and BMI. Multiple regression analyses adjusted for age, gender and BMI showed that a use of fibrates, triglyceride levels and creatinine levels were strong contributors to serum FGF21 levels. In contrast, a use of thiazolidinediones, HDL-cholesterol levels and fasting insulin levels were strong contributors to serum adiponectin levels. This study revealed that serum FGF21 levels were biochemical indicators correlating to a set of essential metabolic parameters, which was distinct from that correlating to serum adiponectin levels in subjects with type 2 diabetes.


Journal of Lipid Research | 2013

Macrophage lipoprotein lipase modulates the development of atherosclerosis but not adiposity

Manabu Takahashi; Hiroaki Yagyu; Fumiko Tazoe; Shuichi Nagashima; Taichi Ohshiro; Kenta Okada; Jun-ichi Osuga; Ira J. Goldberg; Shun Ishibashi

The role of macrophage lipoprotein lipase (LpL) in the development of atherosclerosis and adiposity was examined in macrophage LpL knockout (MLpLKO) mice. MLpLKO mice were generated using cre-loxP gene targeting. Loss of LpL in macrophages did not alter plasma LpL activity or lipoprotein levels. Incubation of apolipoprotein E (ApoE)-deficient β-VLDL with peritoneal macrophages from ApoE knockout mice lacking macrophage LpL (MLpLKO/ApoEKO) led to less cholesteryl ester formation than that found with ApoEKO macrophages. MLpLKO/ApoEKO macrophages had reduced intracellular triglyceride levels, with decreased CD36 and carnitine palmitoyltransferase-1 mRNA levels compared with ApoEKO macrophages, when incubated with VLDL. Although both MLpLKO/ApoEKO and ApoEKO mice developed comparable hypercholesterolemia in response to feeding with a Western-type diet for 12 weeks, atherosclerosis was less in MLpLKO/ApoEKO mice. Epididymal fat mass and gene expression levels associated with inflammation did not differ between the two groups. In conclusion, macrophage LpL plays an important role in the development of atherosclerosis but not adiposity.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2012

Liver-Specific Deletion of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Causes Hepatic Steatosis and Death

Shuichi Nagashima; Hiroaki Yagyu; Ken Ohashi; Fumiko Tazoe; Manabu Takahashi; Taichi Ohshiro; Tumenbayar Bayasgalan; Kenta Okada; Motohiro Sekiya; Jun-ichi Osuga; Shun Ishibashi

Objective—3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) catalyzes the rate-limiting step in cholesterol biosynthesis and has proven to be an effective target of lipid-lowering drugs, statins. The aim of this study was to understand the role of hepatic HMGCR in vivo. Methods and Results—To disrupt the HMGCR gene in liver, we generated mice homozygous for a floxed HMGCR allele and heterozygous for a transgene encoding Cre recombinase under the control of the albumin promoter (liver-specific HMGCR knockout mice). Ninety-six percent of male and 71% of female mice died by 6 weeks of age, probably as a result of liver failure or hypoglycemia. At 5 weeks of age, liver-specific HMGCR knockout mice showed severe hepatic steatosis with apoptotic cells, hypercholesterolemia, and hypoglycemia. The hepatic steatosis and death were completely reversed by providing the animals with mevalonate, indicating its essential role in normal liver function. There was a modest decrease in hepatic cholesterol synthesis in liver-specific HMGCR knockout mice. Instead, they showed a robust increase in the fatty acid synthesis, independent of sterol regulatory element binding protein-1c. Conclusion—Hepatocyte HMGCR is essential for the survival of mice, and its abrogation elicits hepatic steatosis with jaundice and hypoglycemia.


Journal of Lipid Research | 2014

Absence of Nceh1 augments 25-hydroxycholesterol-induced ER stress and apoptosis in macrophages

Motohiro Sekiya; Daisuke Yamamuro; Taichi Ohshiro; Akira Honda; Manabu Takahashi; Masayoshi Kumagai; Kent Sakai; Shuichi Nagashima; Hiroshi Tomoda; Masaki Igarashi; Hiroaki Okazaki; Hiroaki Yagyu; Jun-ichi Osuga; Shun Ishibashi

An excess of cholesterol and/or oxysterols induces apoptosis in macrophages, contributing to the development of advanced atherosclerotic lesions. In foam cells, these sterols are stored in esterified forms, which are hydrolyzed by two enzymes: neutral cholesterol ester hydrolase 1 (Nceh1) and hormone-sensitive lipase (Lipe). A deficiency in either enzyme leads to accelerated growth of atherosclerotic lesions in mice. However, it is poorly understood how the esterification and hydrolysis of sterols are linked to apoptosis. Remarkably, Nceh1-deficient thioglycollate-elicited peritoneal macrophages (TGEMs), but not Lipe-deficient TGEMs, were more susceptible to apoptosis induced by oxysterols, particularly 25-hydroxycholesterol (25-HC), and incubation with 25-HC caused massive accumulation of 25-HC ester in the endoplasmic reticulum (ER) due to its defective hydrolysis, thereby activating ER stress signaling such as induction of CCAAT/enhancer-binding protein-homologous protein (CHOP). These changes were nearly reversed by inhibition of ACAT1. In conclusion, deficiency of Nceh1 augments 25-HC-induced ER stress and subsequent apoptosis in TGEMs. In addition to reducing the cholesteryl ester content of foam cells, Nceh1 may protect against the pro-apoptotic effect of oxysterols and modulate the development of atherosclerosis.


Biochemical and Biophysical Research Communications | 2008

Induction of ABCA1 by overexpression of hormone-sensitive lipase in macrophages.

Fumiko Tazoe; Hiroaki Yagyu; Hiroaki Okazaki; Masaki Igarashi; Kazuhiro Eto; Shuichi Nagashima; Toshihiro Inaba; Hitoshi Shimano; Jun-ichi Osuga; Shun Ishibashi

Initial step toward the reverse-cholesterol transport is cholesterol efflux that is mediated by the ATP-binding cassette transporter A1 (ABCA1). However, it is unknown how the cholesteryl ester (CE) hydrolysis induces the expression of the ABCA1 gene. Overexpression of hormone-sensitive lipase (HSL) increased the hydrolysis of CE and stimulated the expression of ABCA1 gene at the transcriptional level in RAW 264.7 macrophages. The stimulatory effects of the HSL overexpression and cholesterol loading on the ABCA1 promoter activity were additive. Mutational analyses of the promoter of ABCA1 identified the responsible element as the direct repeat-4 (DR-4) that binds LXR/RXR heterodimers. In conclusion, stimulation of hydrolysis of CE in macrophages induces the expression of ABCA1 gene primarily via the LXR-dependent pathway and can be useful for the prevention of atherosclerosis.


Journal of Lipid Research | 2015

Plasma cholesterol-lowering and transient liver dysfunction in mice lacking squalene synthase in the liver

Shuichi Nagashima; Hiroaki Yagyu; Ryu-ichi Tozawa; Fumiko Tazoe; Manabu Takahashi; Tetsuya Kitamine; Daisuke Yamamuro; Kent Sakai; Motohiro Sekiya; Hiroaki Okazaki; Jun-ichi Osuga; Akira Honda; Shun Ishibashi

Squalene synthase (SS) catalyzes the biosynthesis of squalene, the first specific intermediate in the cholesterol biosynthetic pathway. To test the feasibility of lowering plasma cholesterol by inhibiting hepatic SS, we generated mice in which SS is specifically knocked out in the liver (L-SSKO) using Cre-loxP technology. Hepatic SS activity of L-SSKO mice was reduced by >90%. In addition, cholesterol biosynthesis in the liver slices was almost eliminated. Although the hepatic squalene contents were markedly reduced in L-SSKO mice, the hepatic contents of cholesterol and its precursors distal to squalene were indistinguishable from those of control mice, indicating the presence of sufficient centripetal flow of cholesterol and/or its precursors from the extrahepatic tissues. L-SSKO mice showed a transient liver dysfunction with moderate hepatomegaly presumably secondary to increased farnesol production. In a fed state, the plasma total cholesterol and triglyceride were significantly reduced in L-SSKO mice, primarily owing to reduced hepatic VLDL secretion. In a fasted state, the hypolipidemic effect was lost. mRNA expression of liver X receptor α target genes was reduced, while that of sterol-regulatory element binding protein 2 target genes was increased. In conclusion, liver-specific ablation of SS inhibits hepatic cholesterol biosynthesis and induces hypolipidemia without increasing significant mortality.


Journal of Lipid Research | 2014

Critical role of neutral cholesteryl ester hydrolase 1 in cholesteryl ester hydrolysis in murine macrophages

Kent Sakai; Masaki Igarashi; Daisuke Yamamuro; Taichi Ohshiro; Shuichi Nagashima; Manabu Takahashi; Bolormaa Enkhtuvshin; Motohiro Sekiya; Hiroaki Okazaki; Jun-ichi Osuga; Shun Ishibashi

Hydrolysis of intracellular cholesteryl ester (CE) is the rate-limiting step in the efflux of cholesterol from macrophage foam cells. In mouse peritoneal macrophages (MPMs), this process is thought to involve several enzymes: hormone-sensitive lipase (Lipe), carboxylesterase 3 (Ces3), neutral CE hydrolase 1 (Nceh1). However, there is some disagreement over the relative contributions of these enzymes. To solve this problem, we first compared the abilities of several compounds to inhibit the hydrolysis of CE in cells overexpressing Lipe, Ces3, or Nceh1. Cells overexpressing Ces3 had negligible neutral CE hydrolase activity. We next examined the effects of these inhibitors on the hydrolysis of CE and subsequent cholesterol trafficking in MPMs. CE accumulation was increased by a selective inhibitor of Nceh1, paraoxon, and two nonselective inhibitors of Nceh1, (+)-AS115 and (−)-AS115, but not by two Lipe-selective inhibitors, orlistat and 76-0079. Paraoxon inhibited cholesterol efflux to apoA-I or HDL, while 76-0079 did not. These results suggest that Nceh1 plays a dominant role over Lipe in the hydrolysis of CE and subsequent cholesterol efflux in MPMs.

Collaboration


Dive into the Shuichi Nagashima's collaboration.

Top Co-Authors

Avatar

Shun Ishibashi

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroaki Yagyu

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumiko Tazoe

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar

Kenta Okada

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge