Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shuiming Qian is active.

Publication


Featured researches published by Shuiming Qian.


Nature Structural & Molecular Biology | 2006

RNA helicase A is necessary for translation of selected messenger RNAs

Tiffiney Roberts Hartman; Shuiming Qian; Cheryl Bolinger; Soledad Fernandez; Daniel R. Schoenberg; Kathleen Boris-Lawrie

RNA helicase A (RHA) is a highly conserved DEAD-box protein that activates transcription, modulates RNA splicing and binds the nuclear pore complex. The life cycle of typical mRNA involves RNA processing and translation after ribosome scanning of a relatively unstructured 5′ untranslated region (UTR). The precursor RNAs of retroviruses and selected cellular genes harbor a complex 5′ UTR and use a yet-to-be-identified host post-transcriptional effector to stimulate efficient translation. Here we show that RHA recognizes a structured 5′-terminal post-transcriptional control element (PCE) of a retrovirus and the JUND growth-control gene. RHA interacts with PCE RNA in the nucleus and cytoplasm, facilitates polyribosome association and is necessary for its efficient translation. Our results reveal a previously unidentified role for RHA in translation and implicate RHA as an integrative effector in the continuum of gene expression from transcription to translation.


Proceedings of the National Academy of Sciences of the United States of America | 2009

HIV-1 Tat RNA silencing suppressor activity is conserved across kingdoms and counteracts translational repression of HIV-1

Shuiming Qian; Xuehua Zhong; Lianbo Yu; Biao Ding; Peter de Haan; Kathleen Boris-Lawrie

The RNA silencing pathway is an intracellular innate response to virus infections and retro-transposons. Many plant viruses counter this host restriction by RNA silencing suppressor (RSS) activity of a double-stranded RNA-binding protein, e.g., tomato bushy stunt virus P19. Here, we demonstrate P19 and HIV-1 Tat function across the plant and animal kingdoms and suppress a common step in RNA silencing that is downstream of small RNA maturation. Our experiments reveal that RNA silencing in HIV-1 infected human cells severely attenuates the translational output of the unspliced HIV-1 gag mRNA, and possibly all HIV-1 transcripts. The attenuation in gag mRNA translation is exacerbated by K51A substitution in the Tat double-stranded RNA-binding domain. Tat, plant virus RSS, or Dicer downregulation rescues robust gag translation and bolsters HIV-1 virion production. The reversal of HIV-1 translation repression by plant RSS supports the recent finding in Arabidopsis that plant miRNAs operate by translational inhibition. Our results identify common features between RNA silencing suppression of plant and animal viruses. We suggest that RNA silencing-mediated translation repression plays a strategic role in determining the viral set-point in a newly HIV-1-infected patient.


Journal of Virology | 2006

Tertiary Structural and Functional Analyses of a Viroid RNA Motif by Isostericity Matrix and Mutagenesis Reveal Its Essential Role in Replication

Xuehua Zhong; Neocles B. Leontis; Shuiming Qian; Asuka Itaya; Yijun Qi; Kathleen Boris-Lawrie; Biao Ding

ABSTRACT RNA-templated RNA replication is essential for viral or viroid infection, as well as for regulation of cellular gene expression. Specific RNA motifs likely regulate various aspects of this replication. Viroids of the Pospiviroidae family, as represented by the Potato spindle tuber viroid (PSTVd), replicate in the nucleus by utilizing DNA-dependent RNA polymerase II. We investigated the role of the loop E (sarcin/ricin) motif of the PSTVd genomic RNA in replication. A tertiary-structural model of this motif, inferred by comparative sequence analysis and comparison with nuclear magnetic resonance and X-ray crystal structures of loop E motifs in other RNAs, is presented in which core non-Watson-Crick base pairs are precisely specified. Isostericity matrix analysis of these base pairs showed that the model accounts for the reported natural sequence variations and viable experimental mutations in loop E motifs of PSTVd and other viroids. Furthermore, isostericity matrix analysis allowed us to design disruptive, as well as compensatory, mutations of PSTVd loop E. Functional analyses of such mutants by in vitro and in vivo experiments demonstrated that loop E structural integrity is crucial for replication, specifically during transcription. Our results suggest that the PSTVd loop E motif exists and functions in vivo and provide loss-of-function genetic evidence for the essential role of a viroid RNA three-dimensional motif in rolling-circle replication. The use of isostericity matrix analysis of non-Watson-Crick base pairing to rationalize mutagenesis of tertiary motifs and systematic in vitro and in vivo functional assays of mutants offers a novel, comprehensive approach to elucidate the tertiary-structure-function relationships for RNA motifs of general biological significance.


Retrovirology | 2011

Tat RNA silencing suppressor activity contributes to perturbation of lymphocyte miRNA by HIV-1.

Amy M. Hayes; Shuiming Qian; Lianbo Yu; Kathleen Boris-Lawrie

BackgroundMicroRNA (miRNA)-mediated RNA silencing is integral to virtually every cellular process including cell cycle progression and response to virus infection. The interplay between RNA silencing and HIV-1 is multifaceted, and accumulating evidence posits a strike-counterstrike interface that alters the cellular environment to favor virus replication. For instance, miRNA-mediated RNA silencing of HIV-1 translation is antagonized by HIV-1 Tat RNA silencing suppressor activity. The activity of HIV-1 accessory proteins Vpr/Vif delays cell cycle progression, which is a process prominently modulated by miRNA. The expression profile of cellular miRNA is altered by HIV-1 infection in both cultured cells and clinical samples. The open question stands of what, if any, is the contribution of Tat RNA silencing suppressor activity or Vpr/Vif activity to the perturbation of cellular miRNA by HIV-1.ResultsHerein, we compared the perturbation of miRNA expression profiles of lymphocytes infected with HIV-1NL4-3 or derivative strains that are deficient in Tat RNA silencing suppressor activity (Tat K51A substitution) or ablated of the vpr/vif open reading frames. Microarrays recapitulated the perturbation of the cellular miRNA profile by HIV-1 infection. The miRNA expression trends overlapped ~50% with published microarray results on clinical samples from HIV-1 infected patients. Moreover, the number of miRNA perturbed by HIV-1 was largely similar despite ablation of Tat RSS activity and Vpr/Vif; however, the Tat RSS mutation lessened HIV-1 downregulation of twenty-two miRNAs.ConclusionsOur study identified miRNA expression changes attributable to Tat RSS activity in HIV-1NL4-3. The results accomplish a necessary step in the process to understand the interface of HIV-1 with host RNA silencing activity. The overlap in miRNA expression trends observed between HIV-1 infected CEMx174 lymphocytes and primary cells supports the utility of cultured lymphocytes as a tractable model to investigate interplay between HIV-1 and host RNA silencing. The subset of miRNA determined to be perturbed by Tat RSS in HIV-1 infection provides a focal point to define the gene networks that shape the cellular environment for HIV-1 replication.


eLife | 2016

POWERDRESS interacts with HISTONE DEACETYLASE 9 to promote aging in Arabidopsis

Xiangsong Chen; Li Lu; Kevin S. Mayer; Mark Scalf; Shuiming Qian; Aaron Lomax; Lloyd M. Smith; Xuehua Zhong

Leaf senescence is an essential part of the plant lifecycle during which nutrients are re-allocated to other tissues. The regulation of leaf senescence is a complex process. However, the underlying mechanism is poorly understood. Here, we uncovered a novel and the pivotal role of Arabidopsis HDA9 (a RPD3-like histone deacetylase) in promoting the onset of leaf senescence. We found that HDA9 acts in complex with a SANT domain-containing protein POWERDRESS (PWR) and transcription factor WRKY53. Our genome-wide profiling of HDA9 occupancy reveals that HDA9 directly binds to the promoters of key negative regulators of senescence and this association requires PWR. Furthermore, we found that PWR is important for HDA9 nuclear accumulation. This study reveals an uncharacterized epigenetic complex involved in leaf senescence and provides mechanistic insights into how a histone deacetylase along with a chromatin-binding protein contribute to a robust regulatory network to modulate the onset of plant aging. DOI: http://dx.doi.org/10.7554/eLife.17214.001


Oncogene | 2016

FBXO10 deficiency and BTK activation upregulate BCL2 expression in mantle cell lymphoma.

Yangguang Li; Myriam N. Bouchlaka; J Wolff; Kreg Grindle; Li Lu; Shuiming Qian; Xuehua Zhong; N Pflum; P Jobin; Brad S. Kahl; Jens C. Eickhoff; Craig J. Thomas; David T. Yang; Christian M. Capitini; Lixin Rui

Targeting Bruton tyrosine kinase (BTK) by ibrutinib is an effective treatment for patients with relapsed/refractory mantle cell lymphoma (MCL). However, both primary and acquired resistance to ibrutinib have developed in a significant number of these patients. A combinatory strategy targeting multiple oncogenic pathways is critical to enhance the efficacy of ibrutinib. Here, we focus on the BCL2 anti-apoptotic pathway. In a tissue microarray of 62 MCL samples, BCL2 expression positively correlated with BTK expression. Increased levels of BCL2 were shown to be due to a defect in protein degradation because of no or little expression of the E3 ubiquitin ligase FBXO10, as well as transcriptional upregulation through BTK-mediated canonical nuclear factor-κB activation. RNA-seq analysis confirmed that a set of anti-apoptotic genes (for example, BCL2, BCL-XL and DAD1) was downregulated by BTK short hairpin RNA. The downregulated genes also included those that are critical for B-cell growth and proliferation, such as BCL6, MYC, PIK3CA and BAFF-R. Targeting BCL2 by the specific inhibitor ABT-199 synergized with ibrutinib in inhibiting growth of both ibrutinib-sensitive and -resistant cancer cells in vitro and in vivo. These results suggest co-targeting of BTK and BCL2 as a new therapeutic strategy in MCL, especially for patients with primary resistance to ibrutinib.


Epigenetics | 2015

High-resolution mapping of H4K16 and H3K23 acetylation reveals conserved and unique distribution patterns in Arabidopsis and rice.

Li Lu; Xiangsong Chen; Dean Sanders; Shuiming Qian; Xuehua Zhong

Histone acetylation and deacetylation are key epigenetic gene regulatory mechanisms that play critical roles in eukaryotes. Acetylation of histone 4 lysine 16 (H4K16ac) is implicated in many cellular processes. However, its biological function and relationship with transcription are largely unexplored in plants. We generated first genome-wide high-resolution maps of H4K16ac in Arabidopsis thaliana and Oryza sativa. We showed that H4K16ac is preferentially enriched around the transcription start sites and positively correlates with gene expression levels. Co-existence of H4K16ac and H3K23ac is correlated with high gene expression levels, suggesting a potentially combinatorial effect of H4K16ac and H3K23ac histone 3 lysine 23 acetylation on gene expression. Our data further revealed that while genes enriched with both H4K16ac and H3K23ac are ubiquitously expressed, genes enriched with only H4K16ac or H3K23ac showed significantly distinct expression patterns in association with particular developmental stages. Unexpectedly, and unlike in Arabidopsis, there are significant levels of both H4K16ac and H3K23ac in the lowly expressed genes in rice. Furthermore, we found that H4K16ac-enriched genes are associated with different biological processes in Arabidopsis and rice, suggesting a potentially species-specific role of H4K16ac in plants. Together, our genome-wide profiling reveals the conserved and unique distribution patterns of H4K16ac and H3K23ac in Arabidopsis and rice and provides a foundation for further understanding their function in plants.


The Plant Cell | 2018

Canonical and Noncanonical Actions of Arabidopsis Histone Deacetylases in Ribosomal RNA Processing

Xiangsong Chen; Li Lu; Shuiming Qian; Mark Scalf; Lloyd M. Smith; Xuehua Zhong

Histone deacetylases promote pre-rRNA processing by repressing the expression of key regulators and regulating rRNA methylation through direct binding to rRNA and snoRNAs. Ribosome biogenesis is a fundamental process required for all cellular activities. Histone deacetylases play critical roles in many biological processes including transcriptional repression and rDNA silencing. However, their function in pre-rRNA processing remains poorly understood. Here, we discovered a previously uncharacterized role of Arabidopsis thaliana histone deacetylase HD2C in pre-rRNA processing via both canonical and noncanonical manners. HD2C interacts with another histone deacetylase HD2B and forms homo- and/or hetero-oligomers in the nucleolus. Depletion of HD2C and HD2B induces a ribosome-biogenesis deficient phenotype and aberrant accumulation of 18S pre-rRNA intermediates. Our genome-wide analysis revealed that HD2C binds and represses the expression of key genes involved in ribosome biogenesis. Using RNA immunoprecipitation and sequencing, we further uncovered a noncanonical mechanism of HD2C directly associating with pre-rRNA and small nucleolar RNAs to regulate rRNA methylation. Together, this study reveals a multifaceted role of HD2C in ribosome biogenesis and provides mechanistic insights into how histone deacetylases modulate rRNA maturation at the transcriptional and posttranscriptional levels.


Plant Physiology | 2017

Histone Lysine-to-Methionine Mutations Reduce Histone Methylation and Cause Developmental Pleiotropy

Dean Sanders; Shuiming Qian; Rachael Fieweger; Li Lu; James A. Dowell; John M. Denu; Xuehua Zhong

Transgenic plants expressing H3K36M mutations have a dominant-negative effect on the endogenous histone methylation landscape, leading to pleiotropic developmental defects. Epigenetic modifications play critical roles in diverse biological processes. Histone Lys-to-Met (K-to-M) mutations act as gain-of-function mutations to inhibit a wide range of histone methyltransferases and are thought to promote tumorigenesis. However, it is largely unknown whether K-to-M mutations impact organismal development. Using Arabidopsis (Arabidopsis thaliana) as a model system, we discovered that a transgene exogenously expressing histone 3 Lys-36 to Met mutation (K36M) acts in a dominant-negative manner to cause global reduction of H3K36 methylation. Remarkably, this dominant repressive activity is dosage-dependent and causes strong developmental perturbations including extreme branching and early flowering by affecting the expression of genes involved in developmental and metabolic processes. Besides the established pathological roles of K-to-M mutations in tumor cells, we demonstrate a physiological outcome for K-to-M induced H3K36 hypomethylation. This study provides evidence for a conserved dominant-negative inhibitory role of histone K-to-M mutation across the plant and animal kingdoms. We also highlight the unique ability of K36M mutations to alter plant developmental processes leading to severe pleiotropic phenotypes. Finally, our data suggests K-to-M mutations may provide a useful strategy for altering epigenetic landscapes in organisms where histone methyltransferases are uncharacterized.


Nature Genetics | 2018

EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis

Zhenlin Yang; Shuiming Qian; Ray N. Scheid; Li Lu; Xiangsong Chen; Rui Liu; Xuan Du; Xinchen Lv; Melissa D. Boersma; Mark Scalf; Lloyd M. Smith; John M. Denu; Jiamu Du; Xuehua Zhong

The ability of cells to perceive and translate versatile cues into differential chromatin and transcriptional states is critical for many biological processes1–5. In plants, timely transition to a flowering state is crucial for successful reproduction6–9. EARLY BOLTING IN SHORT DAY (EBS) is a negative transcriptional regulator that prevents premature flowering in Arabidopsis thaliana10,11. We found that EBS contains bivalent bromo-adjacent homology (BAH)–plant homeodomain (PHD) reader modules that bind H3K27me3 and H3K4me3, respectively. We observed co-enrichment of a subset of EBS-associated genes with H3K4me3, H3K27me3, and Polycomb repressor complex 2 (PRC2). Notably, EBS adopted an autoinhibition mode to mediate its switch in binding preference between H3K27me3 and H3K4me3. This binding balance was critical because disruption of either EBS–H3K27me3 or EBS–H3K4me3 interaction induced early floral transition. Our results identify a bivalent chromatin reader capable of recognizing two antagonistic histone marks, and we propose a distinct mechanism of interaction between active and repressive chromatin states.EBS, which prevents premature flowering in Arabidopsis, is shown to bind H3K27me3 and H3K4me3 via different domains. Disruption of either EBS–H3K27me3 or EBS–H3K4me3 interaction induces early floral transition.

Collaboration


Dive into the Shuiming Qian's collaboration.

Top Co-Authors

Avatar

Xuehua Zhong

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Li Lu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiangsong Chen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

John M. Denu

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lloyd M. Smith

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mark Scalf

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jiamu Du

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Rui Liu

University of Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xinchen Lv

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge