Shumei Zou
Chinese Center for Disease Control and Prevention
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shumei Zou.
The New England Journal of Medicine | 2013
Rongbao Gao; Bin Cao; Yunwen Hu; Zijian Feng; Dayan Wang; Wanfu Hu; Jian Chen; Zhijun Jie; Haibo Qiu; Ke Xu; Xuewei Xu; Hongzhou Lu; Wenfei Zhu; Zhancheng Gao; Nijuan Xiang; Yinzhong Shen; Zebao He; Yong Gu; Zhiyong Zhang; Yi Yang; Xiang Zhao; Lei Zhou; Xiaodan Li; Shumei Zou; Ye Zhang; Xiyan Li; Lei Yang; Junfeng Guo; Jie Dong; Qun Li
BACKGROUND Infection of poultry with influenza A subtype H7 viruses occurs worldwide, but the introduction of this subtype to humans in Asia has not been observed previously. In March 2013, three urban residents of Shanghai or Anhui, China, presented with rapidly progressing lower respiratory tract infections and were found to be infected with a novel reassortant avian-origin influenza A (H7N9) virus. METHODS We obtained and analyzed clinical, epidemiologic, and virologic data from these patients. Respiratory specimens were tested for influenza and other respiratory viruses by means of real-time reverse-transcriptase-polymerase-chain-reaction assays, viral culturing, and sequence analyses. RESULTS A novel reassortant avian-origin influenza A (H7N9) virus was isolated from respiratory specimens obtained from all three patients and was identified as H7N9. Sequencing analyses revealed that all the genes from these three viruses were of avian origin, with six internal genes from avian influenza A (H9N2) viruses. Substitution Q226L (H3 numbering) at the 210-loop in the hemagglutinin (HA) gene was found in the A/Anhui/1/2013 and A/Shanghai/2/2013 virus but not in the A/Shanghai/1/2013 virus. A T160A mutation was identified at the 150-loop in the HA gene of all three viruses. A deletion of five amino acids in the neuraminidase (NA) stalk region was found in all three viruses. All three patients presented with fever, cough, and dyspnea. Two of the patients had a history of recent exposure to poultry. Chest radiography revealed diffuse opacities and consolidation. Complications included acute respiratory distress syndrome and multiorgan failure. All three patients died. CONCLUSIONS Novel reassortant H7N9 viruses were associated with severe and fatal respiratory disease in three patients. (Funded by the National Basic Research Program of China and others.).
The New England Journal of Medicine | 2014
Qun Li; Lei Zhou; Minghao Zhou; Zhiping Chen; Furong Li; Huanyu Wu; Nijuan Xiang; Enfu Chen; Fenyang Tang; Dayan Wang; Ling Meng; Zhiheng Hong; Wenxiao Tu; Yang Cao; Leilei Li; Fan Ding; Bo Liu; Mei Wang; Rongheng Xie; Rongbao Gao; Xiaodan Li; Tian Bai; Shumei Zou; Jun He; Jiayu Hu; Yangting Xu; Chengliang Chai; Shiwen Wang; Yongjun Gao; Lianmei Jin
BACKGROUND The first identified cases of avian influenza A(H7N9) virus infection in humans occurred in China during February and March 2013. We analyzed data obtained from field investigations to describe the epidemiologic characteristics of H7N9 cases in China identified as of December 1, 2013. METHODS Field investigations were conducted for each confirmed case of H7N9 virus infection. A patient was considered to have a confirmed case if the presence of the H7N9 virus was verified by means of real-time reverse-transcriptase-polymerase-chain-reaction assay (RT-PCR), viral isolation, or serologic testing. Information on demographic characteristics, exposure history, and illness timelines was obtained from patients with confirmed cases. Close contacts were monitored for 7 days for symptoms of illness. Throat swabs were obtained from contacts in whom symptoms developed and were tested for the presence of the H7N9 virus by means of real-time RT-PCR. RESULTS Among 139 persons with confirmed H7N9 virus infection, the median age was 61 years (range, 2 to 91), 71% were male, and 73% were urban residents. Confirmed cases occurred in 12 areas of China. Nine persons were poultry workers, and of 131 persons with available data, 82% had a history of exposure to live animals, including chickens (82%). A total of 137 persons (99%) were hospitalized, 125 (90%) had pneumonia or respiratory failure, and 65 of 103 with available data (63%) were admitted to an intensive care unit. A total of 47 persons (34%) died in the hospital after a median duration of illness of 21 days, 88 were discharged from the hospital, and 2 remain hospitalized in critical condition; 2 patients were not admitted to a hospital. In four family clusters, human-to-human transmission of H7N9 virus could not be ruled out. Excluding secondary cases in clusters, 2675 close contacts of case patients completed the monitoring period; respiratory symptoms developed in 28 of them (1%); all tested negative for H7N9 virus. CONCLUSIONS Most persons with confirmed H7N9 virus infection had severe lower respiratory tract illness, were epidemiologically unrelated, and had a history of recent exposure to poultry. However, limited, nonsustained human-to-human H7N9 virus transmission could not be ruled out in four families.
The Lancet | 2014
Haiying Chen; Hui Yuan; Rongbao Gao; Jinxiang Zhang; Dayan Wang; Ying Xiong; Guoyin Fan; Fan Yang; Xiaodan Li; Jianfang Zhou; Shumei Zou; Lei Yang; Tao Chen; Libo Dong; Hong Bo; Xiang Zhao; Ye Zhang; Yu Lan; Tian Bai; Jie Dong; Qun Li; Shiwen Wang; Zhang Y; Hui Li; Tian Gong; Yong Shi; Xiansheng Ni; Jianxiong Li; Jun Zhou; Jiyi Fan
BACKGROUND Human infections with different avian influenza viruses--eg, H5N1, H9N2, and H7N9--have raised concerns about pandemic potential worldwide. We report the first human infection with a novel reassortant avian influenza A H10N8 virus. METHODS We obtained and analysed clinical, epidemiological, and virological data from a patient from Nanchang City, China. Tracheal aspirate specimens were tested for influenza virus and other possible pathogens by RT-PCR, viral culture, and sequence analyses. A maximum likelihood phylogenetic tree was constructed. FINDINGS A woman aged 73 years presented with fever and was admitted to hospital on Nov 30, 2013. She developed multiple organ failure and died 9 days after illness onset. A novel reassortant avian influenza A H10N8 virus was isolated from the tracheal aspirate specimen obtained from the patient 7 days after onset of illness. Sequence analyses revealed that all the genes of the virus were of avian origin, with six internal genes from avian influenza A H9N2 viruses. The aminoacid motif GlnSerGly at residues 226-228 of the haemagglutinin protein indicated avian-like receptor binding preference. A mixture of glutamic acid and lysine at residue 627 in PB2 protein--which is associated with mammalian adaptation--was detected in the original tracheal aspirate samples. The virus was sensitive to neuraminidase inhibitors. Sputum and blood cultures and deep sequencing analysis indicated no co-infection with bacteria or fungi. Epidemiological investigation established that the patient had visited a live poultry market 4 days before illness onset. INTERPRETATION The novel reassortant H10N8 virus obtained is distinct from previously reported H10N8 viruses. The virus caused human infection and could have been associated with the death of a patient. FUNDING Emergency Research Project on human infection with avian influenza H7N9 virus, the National Basic Research Program of China, and the National Mega-projects for Infectious Diseases.
Nature | 2013
Jiangfang Zhou; Dayan Wang; Rongbao Gao; Baihui Zhao; Jingdong Song; Xian Qi; Yanjun Zhang; Yonglin Shi; Lei Yang; Wenfei Zhu; Tian Bai; Kun Qin; Yu Lan; Shumei Zou; Junfeng Guo; Jie Dong; Libo Dong; Ye Zhang; Hejiang Wei; Xiaodan Li; Jian Lu; Liqi Liu; Xiang Zhao; Xiyan Li; Weijuan Huang; Leying Wen; Hong Bo; Li Xin; Yongkun Chen; Cuilin Xu
Human infection associated with a novel reassortant avian influenza H7N9 virus has recently been identified in China. A total of 132 confirmed cases and 39 deaths have been reported. Most patients presented with severe pneumonia and acute respiratory distress syndrome. Although the first epidemic has subsided, the presence of a natural reservoir and the disease severity highlight the need to evaluate its risk on human public health and to understand the possible pathogenesis mechanism. Here we show that the emerging H7N9 avian influenza virus poses a potentially high risk to humans. We discover that the H7N9 virus can bind to both avian-type (α2,3-linked sialic acid) and human-type (α2,6-linked sialic acid) receptors. It can invade epithelial cells in the human lower respiratory tract and type II pneumonocytes in alveoli, and replicated efficiently in ex vivo lung and trachea explant culture and several mammalian cell lines. In acute serum samples of H7N9-infected patients, increased levels of the chemokines and cytokines IP-10, MIG, MIP-1β, MCP-1, IL-6, IL-8 and IFN-α were detected. We note that the human population is naive to the H7N9 virus, and current seasonal vaccination could not provide protection.
Journal of Virology | 2011
Xiu-Feng Wan; Libo Dong; Yu Lan; Li-Ping Long; Cuiling Xu; Shumei Zou; Zi Li; Leying Wen; Zhipeng Cai; Wei Wang; Xiaodan Li; Fan Yuan; Hongtao Sui; Ye Zhang; Jie Dong; Shanhua Sun; Yan Gao; Min Wang; Tian Bai; Lei Yang; Dexin Li; Weizhong Yang; Hongjie Yu; Shiwen Wang; Zijian Feng; Wang Y; Yuanji Guo; Richard J. Webby; Yuelong Shu
ABSTRACT Human infections of H5N1 highly pathogenic avian influenza virus have continued to occur in China without corresponding outbreaks in poultry, and there is little conclusive evidence of the source of these infections. Seeking to identify the source of the human infections, we sequenced 31 H5N1 viruses isolated from humans in China (2005 to 2010). We found a number of viral genotypes, not all of which have similar known avian virus counterparts. Guided by patient questionnaire data, we also obtained environmental samples from live poultry markets and dwellings frequented by six individuals prior to disease onset (2008 and 2009). H5N1 viruses were isolated from 4 of the 6 live poultry markets sampled. In each case, the genetic sequences of the environmental and corresponding human isolates were highly similar, demonstrating a link between human infection and live poultry markets. Therefore, infection control measures in live poultry markets are likely to reduce human H5N1 infection in China.
Eurosurveillance | 2014
Dayan Wang; Lei Yang; Rongbao Gao; Zhang X; Tan Y; Aiping Wu; Wenfei Zhu; Jianfang Zhou; Shumei Zou; Xiyan Li; Sun Y; Zhang Y; Liu Y; Liu T; Xiong Y; Xu J; Chen L; Weng Y; Xian Qi; Junfeng Guo; Jie Dong; Huang W; Libo Dong; Xiang Zhao; Liu L; Jian Lu; Yu Lan; Hejiang Wei; Li Xin; Yongkun Chen
A novel avian influenza A(H7N9) virus causing human infection emerged in February 2013 in China. To elucidate the mechanism of interspecies transmission, we compared the signature amino acids of avian influenza A(H7N9) viruses from human and non-human hosts and analysed the reassortants of 146 influenza A(H7N9) viruses with full genome sequences. We propose a genetic tuning procedure with continuous amino acid substitutions and reassorting that mediates host adaptation and interspecies transmission. When the early influenza A(H7N9) virus, containing ancestor haemagglutinin (HA) and neuraminidase (NA) genes similar to A/Shanghai/05 virus, circulated in waterfowl and transmitted to terrestrial poultry, it acquired an NA stalk deletion at amino acid positions 69 to 73. Then, receptor binding preference was tuned to increase the affinity to human-like receptors through HA G186V and Q226L mutations in terrestrial poultry. Additional mammalian adaptations such as PB2 E627K were selected in humans. The continual reassortation between H7N9 and H9N2 viruses resulted in multiple genotypes for further host adaptation. When we analysed a potential association of mutations and reassortants with clinical outcome, only the PB2 E627K mutation slightly increased the case fatality rate. Genetic tuning may create opportunities for further adaptation of influenza A(H7N9) and its potential to cause a pandemic.
PLOS ONE | 2011
Cuiling Xu; Tian Bai; A. Danielle Iuliano; Min Wang; Lei Yang; Leying Wen; Yuhong Zeng; Xiaodan Li; Tao Chen; Wei Wang; Ying Hu; Limei Yang; Zi Li; Shumei Zou; Dexin Li; Shiwen Wang; Zijian Feng; Zhang Y; Hongjie Yu; Weizhong Yang; Wang Y; Marc-Alain Widdowson; Yuelong Shu
Background Mainland China experienced pandemic influenza H1N1 (2009) virus (pH1N1) with peak activity during November-December 2009. To understand the geographic extent, risk factors, and attack rate of pH1N1 infection in China we conducted a nationwide serological survey to determine the prevalence of antibodies to pH1N1. Methodology/Principal Findings Stored serum samples (n = 2,379) collected during 2006-2008 were used to estimate baseline serum reactogenicity to pH1N1. In January 2010, we used a multistage-stratified random sampling method to select 50,111 subjects who met eligibility criteria and collected serum samples and administered a standardized questionnaire. Antibody response to pH1N1 was measured using haemagglutination inhibition (HI) assay and the weighted seroprevalence was calculated using the Taylor series linearization method. Multivariable logistic regression analyses were used to examine risk factors for pH1N1 seropositivity. Baseline seroprevalence of pH1N1 antibody (HI titer ≥40) was 1.2%. The weighted seroprevalence of pH1N1 among the Chinese population was 21.5%(vaccinated: 62.0%; unvaccinated: 17.1%). Among unvaccinated participants, those aged 6-15 years (32.9%) and 16-24 years (30.3%) had higher seroprevalence compared with participants aged 25–59 years (10.7%) and ≥60 years (9.9%, P<0.0001). Children in kindergarten and students had higher odds of seropositivity than children in family care (OR: 1.36 and 2.05, respectively). We estimated that 207.7 million individuals (15.9%) experienced pH1N1 infection in China. Conclusions/Significance The Chinese population had low pre-existing immunity to pH1N1 and experienced a relatively high attack rate in 2009 of this virus. We recommend routine control measures such as vaccination to reduce transmission and spread of seasonal and pandemic influenza viruses.
Journal of Virology | 2016
Dayan Wang; Lei Yang; Wenfei Zhu; Ye Zhang; Shumei Zou; Hong Bo; Rongbao Gao; Jie Dong; Weijuan Huang; Junfeng Guo; Zi Li; Xiang Zhao; Xiaodan Li; Li Xin; Jianfang Zhou; Tao Chen; Libo Dong; Hejiang Wei; Xiyan Li; Liqi Liu; Jing Tang; Yu Lan; Jing Yang; Yuelong Shu
ABSTRACT Due to enzootic infections in poultry and persistent human infections in China, influenza A (H7N9) virus has remained a public health threat. The Yangtze River Delta region, which is located in eastern China, is well recognized as the original source for H7N9 outbreaks. Based on the evolutionary analysis of H7N9 viruses from all three outbreak waves since 2013, we identified the Pearl River Delta region as an additional H7N9 outbreak source. H7N9 viruses are repeatedly introduced from these two sources to the other areas, and the persistent circulation of H7N9 viruses occurs in poultry, causing continuous outbreak waves. Poultry movements may contribute to the geographic expansion of the virus. In addition, the AnH1 genotype, which was predominant during wave 1, was replaced by JS537, JS18828, and AnH1887 genotypes during waves 2 and 3. The establishment of a new source and the continuous evolution of the virus hamper the elimination of H7N9 viruses, thus posing a long-term threat of H7N9 infection in humans. Therefore, both surveillance of H7N9 viruses in humans and poultry and supervision of poultry movements should be strengthened. IMPORTANCE Since its occurrence in humans in eastern China in spring 2013, the avian H7N9 viruses have been demonstrating the continuing pandemic threat posed by the current influenza ecosystem in China. As the viruses are silently circulated in poultry, with potentially severe outcomes in humans, H7N9 virus activity in humans in China is very important to understand. In this study, we identified a newly emerged H7N9 outbreak source in the Pearl River Delta region. Both sources in the Yangtze River Delta region and the Pearl River Delta region have been established and found to be responsible for the H7N9 outbreaks in mainland China.
Journal of Clinical Microbiology | 2007
Shumei Zou; Jian Han; Leying Wen; Yan Liu; Kassi Cronin; Shanjuan H. Lum; Lu Gao; Jie Dong; Ye Zhang; Yuanji Guo; Yuelong Shu
ABSTRACT We report the use of ResPlex III for genotyping influenza A viruses. The performance characteristics of the assay with regard to H5N1 are further evaluated. The ResPlex system incorporates a novel multiplex PCR technology, target-enriched multiplex PCR, to simultaneously amplify multiple molecular targets in one reaction. The ResPlex III assay targets the H1, H2, H3, H5, H7, H9, N1, and N2 genes from the influenza A virus as well as the NS genes from influenza A (NSA) and B (NSB) viruses, providing detection and genotyping of influenza A and B viruses. The analytical sensitivities for detecting the H5, N1, and NSA genes were 1, 10−1, and 10 50% tissue culture infectious doses/200 μl/reaction, respectively. A total of 217 sequential clinical samples including 14 samples with human H5N1 infections were tested by the ResPlex III assay, and the results were compared to a reference standard combined with results of viral culture and conventional reverse transcriptase and real-time PCR. The clinical sensitivity and specificity for detecting H5N1 were 93.3% and 100%, respectively, indicating that different subtypes of influenza A virus can be quickly and correctly identified using the ResPlex III genotyping approach.
Scientific Reports | 2015
Donglin Wu; Shumei Zou; Tian Bai; Jing Li; Xiang Zhao; Lei Yang; Hongmin Liu; Xiaodan Li; Xianda Yang; Li Xin; Shuang Xu; Xiaohui Zou; Xiyan Li; Ao Wang; Junfeng Guo; Bingxin Sun; Weijuan Huang; Ye Zhang; Xiang Li; Rongbao Gao; Bo Shen; Tao Chen; Jie Dong; Hejiang Wei; Shiwen Wang; Qun Li; Dexin Li; Guizhen Wu; Zijian Feng; George F. Gao
Live poultry markets are a source of human infection with avian influenza A (H7N9) virus. On February 21, 2014, a poultry farmer infected with H7N9 virus was identified in Jilin, China, and H7N9 and H9N2 viruses were isolated from the patients farm. Reassortment between these subtype viruses generated five genotypes, one of which caused the human infection. The date of H7N9 virus introduction to the farm is estimated to be between August 21, 2013 (95% confidence interval [CI] June 6, 2013-October 6, 2013) and September 25, 2013 (95% CI May 28, 2013-January 4, 2014), suggesting that the most likely source of virus introduction was the first batch of poultry purchased in August 2013. The reassortment event that led to the human virus may have occurred between January 2, 2014 (95% CI November 8, 2013-February 12, 2014) and February 12, 2014 (95% CI January 19, 2014-February 18, 2014). Our findings demonstrate that poultry farms could be a source of reassortment between H7N9 virus and H9N2 virus as well as human infection, which emphasizes the importance to public health of active avian influenza surveillance at poultry farms.