Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shüné V. Oliver is active.

Publication


Featured researches published by Shüné V. Oliver.


Malaria Journal | 2007

Indoor collections of the Anopheles funestus group (Diptera: Culicidae) in sprayed houses in northern KwaZulu-Natal, South Africa

Joel C Mouatcho; Keith Hargreaves; Lizette L. Koekemoer; Basil D. Brooke; Shüné V. Oliver; Richard H. Hunt; Maureen Coetzee

BackgroundInsecticide resistance in malaria vector mosquitoes presents a serious problem for those involved in control of this disease. South Africa experienced a severe malaria epidemic during 1999/2000 due to pyrethroid resistance in the major vector Anopheles funestus. Subsequent monitoring and surveillance of mosquito populations were conducted as part of the malaria vector control programme.MethodsA sample of 269 Anopheles funestus s.l. was collected in Mamfene, northern KwaZulu-Natal, using exit window traps in pyrethroid sprayed houses between May and June 2005. Mosquitoes were identified to species level, assayed for insecticide susceptibility, analysed for Plasmodium falciparum infectivity and blood meal source.ResultsOf the 220 mosquitoes identified using the rDNA PCR method, two (0.9%) were An. funestus s.s. and 218 (99.1%) Anopheles parensis. Standard WHO insecticide susceptibility tests were performed on F1 progeny from wild caught An. parensis females and a significant survival 24 h post exposure was detected in 40% of families exposed to 0.05% deltamethrin. Biochemical analysis of F1 An. parensis showed no elevation in levels/activity of the detoxifying enzyme systems when compared with an insecticide susceptible An. funestus laboratory strain. Among the 149 female An. parensis tested for P. falciparum circumsporozoite infections, 13.4% were positive. All ELISA positive specimens (n = 20) were re-examined for P. falciparum infections using a PCR assay and none were found to be positive. Direct ELISA analysis of 169 blood meal positive specimens showed > 75% of blood meals were taken from animals. All blood fed, false positive mosquito samples for the detection of sporozoites of P. falciparum were zoophilic.ConclusionThe combination of pyrethroid resistance and P. falciparum false-positivity in An. parensis poses a problem for vector control. If accurate species identification had not been carried out, scarce resources would have been wasted in the unnecessary changing of control strategies to combat a non-vector species.


Vector-borne and Zoonotic Diseases | 2011

Multiple Insecticide Resistance in Anopheles gambiae (Diptera: Culicidae) from Pointe Noire, Republic of the Congo

Lizette L. Koekemoer; Belinda L. Spillings; Riann Christian; Te-Chang M. Lo; Maria L. Kaiser; Ryan Norton; Shüné V. Oliver; Kwang S Choi; Basil D. Brooke; Richard H. Hunt; Maureen Coetzee

Successful implementation of an integrated vector control program will rely on availability of accurate vector information in the specific location. However, such information can be limited in some countries. The aim of this study was to obtain baseline vector information from Pointe Noire on the Congo coast (Republic of the Congo). Field sampling was conducted during April 2009 in the village of Boutoto and its surrounds, close to the city of Pointe Noire. Anopheles gambiae sensu lato mosquitoes were collected resting indoors. Samples were analyzed for insecticide susceptibility, species identification, and Plasmodium sporozoite infection. Molecular and biochemical assays were conducted to characterize insecticide resistance mechanisms. The malaria vector A. gambiae S-form was the only mosquito species identified, and it had a high Plasmodium falciparum infection rate (9.6%). Multiple insecticide resistance was detected in this population with full susceptibility to only one insecticide class, the organophosphates. Dieldrin and DDT resistance was mainly attributed to target-site resistance (the Rdl and L1014F/L1014S kdr mutations respectively), whereas pyrethroid resistance was mainly attributed to P450 metabolic enzyme-mediated detoxification in addition to kdr. The role of various insecticide resistance mechanisms revealed a complex association between metabolic detoxification and reduced target-site sensitivity.


Parasites & Vectors | 2014

The effect of multiple blood-feeding on the longevity and insecticide resistant phenotype in the major malaria vector Anopheles arabiensis (Diptera: Culicidae)

Shüné V. Oliver; Basil D. Brooke

BackgroundAnopheles arabiensis is a major malaria vector in Africa. Adult females are likely to imbibe multiple blood meals during their lifetime. This results in regular exposure to potential toxins and blood-meal induced oxidative stress. Defence responses to these stressors may affect other factors of epidemiological significance, such as insecticide resistance and longevity. The aims of this study were to examine the effect of multiple blood-feeding on insecticide tolerance/resistance with increasing age, to assess the underlying biochemical mechanisms for the responses recorded, and to assess the effect of multiple blood-feeding on the life histories of adult females drawn from insecticide resistant and susceptible laboratory reared An. arabiensis.MethodsLaboratory reared An. arabiensis females from an insecticide resistant and an insecticide susceptible colony were offered either a single blood meal or multiple blood meals at 3-day intervals. Their tolerance or resistance to insecticide was then monitored by WHO bioassay four hours post blood-feeding. The biochemical basis of the phenotypic response was assessed by examining the effect of blood on detoxification enzyme activity and the effect of blood-meals on detoxification enzyme activity in ageing mosquitoes.ResultsControl cohorts that were not offered any blood meals showed steadily decreasing levels of insecticide tolerance/resistance with age, whereas a single blood meal significantly increased tolerance/resistance primarily at the age of three days. The expression of resistance/tolerance in those cohorts fed multiple blood meals generally showed the least variation with age. These results were consistent following exposure to DDT and pyrethroids but not to malathion. Multiple blood-meals also maintained the DDT and permethrin resistant phenotype, even after treatment females had stopped taking blood-meals. Biochemical analysis suggests that this phenotypic effect in resistant females may be mediated by the maintenance of increased glutathione s-transferase activity as a consequence of multiple blood-feeding. Multiple blood-feeding increased the longevity of insecticide resistant females regardless of their mating status, but only increased the longevity of unmated susceptible females.ConclusionThese data suggest that multiple blood-feeding confers a competitive advantage to insecticide resistant females by increased longevity and maintenance of the expression of resistance with age.


Malaria Journal | 2013

The effect of larval nutritional deprivation on the life history and DDT resistance phenotype in laboratory strains of the malaria vector Anopheles arabiensis.

Shüné V. Oliver; Basil D. Brooke

BackgroundAnopheles arabiensis is a major malaria vector in Africa. It thrives in agricultural areas and has been associated with increased malaria incidence in areas under rice and maize cultivation. This effect may be due to increased adult size and abundance as a consequence of optimal larval nutrition. The aim of this study was to examine the effect of larval nutrition on the life history and expression of insecticide resistance in adults of laboratory reared An. arabiensis.MethodsLarvae drawn from an insecticide susceptible An. arabiensis strain (SENN) as well as a DDT-resistant strain (SENN-DDT) were subjected to three fasting regimes: 1 mg of food per larva offered once per day, once every second day and once every third day. Control cohorts included larvae offered 1 mg food thrice per day. The rate of larval development was compared between matched cohorts from each strain as well as between fasted larvae and their respective controls. The expression of DDT resistance/tolerance in adults was compared between the starved cohorts and their controls by strain. Factors potentially affecting variation in DDT resistance/tolerance were examined including: adult body size (wing length), knock-down resistance (kdr) status and levels of detoxification enzyme activity.Results and conclusionAnopheles arabiensis larval development is prolonged by nutrient deprivation and adults that eclose from starved larvae are smaller and less tolerant to DDT intoxication. This effect on DDT tolerance in adults is also associated with reduced detoxification enzyme activity. Conversely, well fed larvae develop comparatively quickly into large, more DDT tolerant (SENN) or resistant (SENN-DDT) adults. This is important in those instances where cereal farming is associated with increased An. arabiensis transmitted malaria incidence, because large adult females with high teneral reserves and decreased susceptibility to insecticide intoxication may also prove to be more efficient malaria vectors. In general, larval nutrient deprivation in An. arabiensis has important implications for subsequent adults in terms of their size and relative insecticide susceptibility, which may in turn impact on their malaria vector capacity in areas where insecticide based control measures are in place.


PLOS ONE | 2016

The Role of Oxidative Stress in the Longevity and Insecticide Resistance Phenotype of the Major Malaria Vectors Anopheles arabiensis and Anopheles funestus

Shüné V. Oliver; Basil D. Brooke

Oxidative stress plays numerous biological roles, both functional and pathological. The role of oxidative stress in various epidemiologically relevant biological traits in Anopheles mosquitoes is not well established. In this study, the effects of oxidative stress on the longevity and insecticide resistance phenotype in the major malaria vector species An. arabiensis and An. funestus were examined. Responses to dietary copper sulphate and hydrogen peroxide were used as proxies for the oxidative stress phenotype by determining the effect of copper on longevity and hydrogen peroxide lethal dose. Glutathione peroxidase and catalase activities were determined colorimetrically. Oxidative burden was quantified as protein carbonyl content. Changes in insecticide resistance phenotype were monitored by WHO bioassay. Insecticide resistant individuals showed an increased capacity for coping with oxidative stress, mediated by increased glutathione peroxidase and catalase activity. This effect was observed in both species, as well as in laboratory strains and F1 individuals derived from wild-caught An. funestus mothers. Phenotypic capacity for coping with oxidative stress was greatest in strains with elevated Cytochrome P450 activity. Synergism of oxidative stress defence enzymes by dietary supplementation with haematin, 3-Amino-1, 2, 4-triazole and Sodium diethyldithiocarbamate significantly increased pyrethroid-induced mortality in An. arabiensis and An. funestus. It is therefore concluded that defence against oxidative stress underlies the augmentation of the insecticide resistance phenotype associated with multiple blood-feeding. This is because multiple blood-feeding ultimately leads to a reduction of oxidative stress in insecticide resistant females, and also reduces the oxidative burden induced by DDT and pyrethroids, by inducing increased glutathione peroxidase activity. This study highlights the importance of oxidative stress in the longevity and insecticide resistance phenotype in malaria vectors.


PLOS ONE | 2017

The effects of ingestion of hormonal host factors on the longevity and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae)

Shüné V. Oliver; Basil D. Brooke

Exogenous vertebrate-derived factors circulating in the blood have the capacity to modulate the biology of haematophagous insects. These include insulin, insulin growth factor 1 (IGF) and transforming growth factor β1 (TGFβ). The effects of the consumption of these three proteins were examined on laboratory strains of Anopheles arabiensis. SENN, an insecticide susceptible strain and SENN DDT, a resistant strain selected from SENN, were fed with host factor-supplemented sucrose. Adult longevity was measured and insecticide resistance phenotype over time was assessed by WHO bioassay. Detoxification and oxidative stress defence enzyme activity was assessed calorimetrically. Insulin supplementation augmented insecticide resistance in young adult mosquitoes. This effect was due to the hormonal nature of the protein, as heat-denatured insulin did not elicit the same response. In contrast, IGF and TGFβ consumption generally reduced the expression of insecticide resistance. Insulin ingestion significantly reduced longevity in the insecticide susceptible strain. IGF elicited the same response in the susceptible strain, while TGF consumption had no effect on either strain. Consumption of all factors significantly decreased Glutathione S-transferase activity and increased cytochrome P450 and superoxide dismutase activity. This suggests that the altered detoxification phenotype is mediated primarily by cytochrome P450 activity, which would result in an increase in oxidative stress. The increased superoxide dismutase activity suggests that this enzyme class alleviates the oxidative stress as opposed to glutathione-based redox systems. Oxidative stress responses play a crucial role in insecticide resistance and longevity. These data show that ingested hormonal factors can affect mosquito longevity and insecticide susceptibility, both of which are important characteristics in terms of malaria transmission and control.


Journal of Medical Entomology | 2016

The Influence of Insecticide Resistance, Age, Sex, and Blood Feeding Frequency on Thermal Tolerance of Wild and Laboratory Phenotypes of Anopheles funestus (Diptera: Culicidae)

C. L. Lyons; Shüné V. Oliver; Richard H. Hunt; Maureen Coetzee

Abstract Resistance to insecticides is a global phenomenon and is increasing at an unprecedented rate. How resistant and susceptible strains of malaria vectors might differ in terms of life history and basic biology is often overlooked, despite the potential importance of such information in light of changing climates. Here, we investigated the upper thermal limits (ULT50) of wild and laboratory strains of Anopheles funestus Giles mosquitoes, including resistance status, sex, age, and blood feeding status as potential factors influencing ULT50. No significant differences in ULT50 were observed between strains displaying different resistance patterns, nor was there a significant difference between wild and laboratory strains. In some instances, strains showed a senescence response, displaying decreased ULT50 with an increase in age, and differences between males and females (females displaying higher ULT50 than males). Blood feeding did not seem to influence ULT50 in any way. For An. funestus, it seems evident that there is no cost to resistance despite what is displayed in other anopheline species. This could have significant impacts for vector control, with resistant populations of An. funestus performing just as well, if not better, than susceptible strains, especially under changing environmental conditions such as those expected to occur with climate change.


Parasites & Vectors | 2015

Evaluation of the toxicity and repellence of an organic fatty acids mixture (C8910) against insecticide susceptible and resistant strains of the major malaria vector Anopheles funestus Giles (Diptera: Culicidae)

Michael O. Samuel; Shüné V. Oliver; Oliver R. Wood; Maureen Coetzee; Basil D. Brooke

BackgroundMalaria vector control relies principally on the use of insecticides, especially pyrethroids. Because of the increasing occurrence of insecticide resistance in target vector populations, the development of new insecticides, particularly those with novel modes of action, is particularly important, especially in terms of managing insecticide resistance. The C8910 formulation is a patented mixture of compounds comprising straight-chain octanoic, nonanoic and decanoic saturated fatty acids. This compound has demonstrated toxic and repellent effects against several arthropod species. The aims of this study were to measure the insecticidal effects of C8910 against an insecticide susceptible (FANG) and a pyrethroid resistant (FUMOZ-R) laboratory strain of An. funestus as well as against wild-caught An. funestus material from Zambia (ZamF), and to investigate the repellent effects of two formulations of C8910 against these strains.MethodsToxicity against adult females was assessed using a range of concentrations based on the CDC bottle bioassay method and repellence of three different C8910 formulations was assessed using standard choice-chamber bioassays.ResultsC8910 proved equally toxic to adult females of the FUMOZ-R and FANG laboratory strains, as well as to adult females of the wild-caught (ZamF) sample. None of the C8910 formulations tested gave any conclusive indication of repellence against any of the strains.ConclusionC8910 is equally effective as an adulticide against pyrethroid resistant and insecticide susceptible An. funestus. However, the formulations tested did not show any consistent repellence against laboratory reared and wild-caught female samples of this species. Nevertheless, C8910 shows potential as an adulticide that can be used for malaria vector control, particularly in those instances where insecticide resistance management is required.


PLOS ONE | 2018

The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae)

Shüné V. Oliver; Basil D. Brooke

Metal exposure is one of the commonest anthropogenic pollutants mosquito larvae are exposed to, both in agricultural and urban settings. As members of the Anopheles gambiae complex, which contains several major malaria vector species including An. arabiensis, are increasingly adapting to polluted environments, this study examined the effects of larval metal exposure on various life history traits of epidemiological importance. Two laboratory strains of An. arabiensis, SENN (insecticide susceptible) and SENN DDT (insecticide resistant), were reared in maximum acceptable toxicity concentrations, (MATC—the highest legally accepted concentration) of cadmium chloride, lead nitrate and copper nitrate. Following these exposures, time to pupation, adult size and longevity were determined. Larvae reared in double the MATC were assessed for changes in malathion and deltamethrin tolerance, measured by lethal time bottle bioassay, as well as changes in detoxification enzyme activity. As defence against oxidative stress has previously been demonstrated to affect the expression of insecticide resistance, catalase, glutathione peroxidase and superoxide dismutase activity was assessed. The relative metal toxicity to metal naïve larvae was also assessed. SENN DDT larvae were more tolerant of metal pollution than SENN larvae. Pupation in SENN larvae was significantly reduced by metal exposure, while adult longevity was not affected. SENN DDT showed decreased adult size after larval metal exposure. Adult insecticide tolerance was increased after larval metal exposure, and this effect appeared to be mediated by increased β-esterase, cytochrome P450 and superoxide dismutase activity. These data suggest an enzyme-mediated positive link between tolerance to metal pollutants and insecticide resistance in adult mosquitoes. Furthermore, exposure of larvae to metal pollutants may have operational consequences under an insecticide-based vector control scenario by increasing the expression of insecticide resistance in adults.


Acta Tropica | 2018

The effect of commercial herbicide exposure on the life history and insecticide resistance phenotypes of the major malaria vector Anopheles arabiensis (Diptera: culicidae)

Shüné V. Oliver; Basil D. Brooke

Herbicides, such as atrazine and glyphosate, are common agrochemicals known to pollute surface ground water. As such, aquatic invertebrates associated with agricultural activities can be exposed to varying doses of these xenobiotics. Anopheles arabiensis, a major malaria vector species in southern Africa, is often closely associated with agricultural activities. This study aimed to examine the effects of larval atrazine or glyphosate exposure on larval and adult life history traits on two laboratory strains of An. arabiensis; one insecticide susceptible (SENN), the other selected for resistance (SENN DDT). Atrazine delayed time to pupation in both strains, but markedly more so in SENN DDT. Glyphosate treatment reduced time to pupation in SENN DDT. Larval atrazine exposure decreased adult longevity in SENN, while both herbicide treatments significantly increased adult longevity in SENN DDT. Larval glyphosate exposure was the more potent enhancer of insecticide tolerance in adult mosquitoes. In SENN DDT, it reduced deltamethrin and malathion-induced mortality, and the LT50 s for these insecticides were increased in association with herbicide exposure. Glyphosate exposure also increased the LT50 s for malathion and deltamethrin in SENN. Exposure to both herbicides had contrasting effects on detoxification enzyme activities. Although both increased cytochrome P450 activity, they had opposite effects on those enzymes involved in reactive oxygen species detoxification. Glyphosate decreased glutathione S-transferase activity, but increased catalase activity with atrazine having the opposite effect. This study demonstrates that larval exposure to the herbicides atrazine and glyphosate can affect the insecticide susceptibilities and life history traits of epidemiological importance in An. arabiensis, with glyphosate being the more potent effector of insecticide resistance.

Collaboration


Dive into the Shüné V. Oliver's collaboration.

Top Co-Authors

Avatar

Basil D. Brooke

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Maureen Coetzee

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Richard H. Hunt

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Lizette L. Koekemoer

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Michael O. Samuel

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Belinda L. Spillings

National Health Laboratory Service

View shared research outputs
Top Co-Authors

Avatar

C. L. Lyons

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Joel C Mouatcho

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Kwang S Choi

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar

Maria L. Kaiser

University of the Witwatersrand

View shared research outputs
Researchain Logo
Decentralizing Knowledge