Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shunsuke Aburaya is active.

Publication


Featured researches published by Shunsuke Aburaya.


Marine Biotechnology | 2016

Putative Alginate Assimilation Process of the Marine Bacterium Saccharophagus degradans 2-40 Based on Quantitative Proteomic Analysis.

Toshiyuki Takagi; Hironobu Morisaka; Shunsuke Aburaya; Yohei Tatsukami; Kouichi Kuroda; Mitsuyoshi Ueda

Quantitative proteomic analysis was conducted to assess the assimilation processes of Saccharophagus degradans cultured with glucose, pectin, and alginate as carbon sources. A liquid chromatography-tandem mass spectrometry approach was used, employing our unique, long monolithic silica capillary column. In an attempt to select candidate proteins that correlated to alginate assimilation, the production of 23 alginate-specific proteins was identified by statistical analyses of the quantitative proteomic data. Based on the analysis, we propose that S. degradans has an alginate-specific gene cluster for efficient alginate utilization. The alginate-specific proteins of S. degradans were comprised of alginate lyases, enzymes related to carbohydrate metabolism, membrane transporters, and transcription factors. Among them, the short-chain dehydrogenase/reductase Sde_3281 annotated in the alginate-specific cluster showed 4-deoxy-l-erythro-5-hexoseulose uronic acid reductase (DehR) activity. Furthermore, we found two different genes (Sde_3280 and Sde_0939) encoding 2-keto-3-deoxy-d-gluconic acid (KDG) kinases (KdgK) that metabolize the KDG derived from alginate and pectin in S. degradans. S. degradans used Sde_3280 to phosphorylate the KDG derived from alginate and Sde_0939 to phosphorylate the KDG derived from pectin. The distinct selection of KdgKs provides an important clue toward the elucidation of how S. degradans recognizes and processes polysaccharides.


AMB Express | 2015

Exoproteome analysis of Clostridium cellulovorans in natural soft-biomass degradation

Kohei Esaka; Shunsuke Aburaya; Hironobu Morisaka; Kouichi Kuroda; Mitsuyoshi Ueda

Clostridium cellulovorans is an anaerobic, cellulolytic bacterium, capable of effectively degrading various types of soft biomass. Its excellent capacity for degradation results from optimization of the composition of the protein complex (cellulosome) and production of non-cellulosomal proteins according to the type of substrates. In this study, we performed a quantitative proteome analysis to determine changes in the extracellular proteins produced by C. cellulovorans for degradation of several types of natural soft biomass. C. cellulovorans was cultured in media containing bagasse, corn germ, rice straw (natural soft biomass), or cellobiose (control). Using an isobaric tag method and a liquid chromatograph equipped with a long monolithic silica capillary column/mass spectrometer, we identified 372 proteins in the culture supernatant. Of these, we focused on 77 saccharification-related proteins of both cellulosomal and non-cellulosomal origins. Statistical analysis showed that 18 of the proteins were specifically produced during degradation of types of natural soft biomass. Interestingly, the protein Clocel_3197 was found and commonly involved in the degradation of every natural soft biomass studied. This protein may perform functions, in addition to its known metabolic functions, that contribute to effective degradation of natural soft biomass.


Plant Physiology and Biochemistry | 2016

Transcriptome and proteome analyses provide insight into laticifer's defense of Euphorbia tirucalli against pests

Sakihito Kitajima; Kenji Miura; Wataru Aoki; Katsuyuki T. Yamato; Toki Taira; Ryuta Murakami; Shunsuke Aburaya

The cytoplasm of laticifers, which are plant cells specialized for rubber production and defense against microbes and herbivores, is a latex. Although laticifers share common functions, the protein constituents of latexes are highly variable among plant species and even among organs. In this study, transcriptomic and proteomic analyses of Euphorbia tirucallis (Euphorbiaceae) latex were conducted to determine the molecular basis of the laticifers functions in this plant. The hybrid de novo assembly of Illumina mRNA-seq and expressed sequence tags obtained by Sangers sequencing revealed 26,447 unigenes. A unigene similar to Arabidopsis embryo-specific protein 3 (AT5G62200), which is a PLAT domain-containing protein, and rubber elongation factor showed the highest expression levels. The proteome analysis, studied by liquid chromatography-mass spectrometry with the de novo assembled unigenes as the database, revealed 161 proteins in the latex, 107 of which were not detected in the stem. A gene ontology analysis indicated that the laticifers proteome was enriched with proteins related to proteolysis, phosphatase, defense against various environmental stresses and lipid metabolisms. D-mannose-binding lectin, ricin (which lacked the N-terminal conserved ribosome-inactivating protein domain), chitinase and peroxidase were highly accumulated, as confirmed by two-dimensional polyacrylamide gel electrophoresis. Thus, the lectins and chitinase may be the major defensive proteins against pests, and the other defense-related proteins and transcripts detected in latex may work in coordination with them. Highly expressing unigenes with unknown functions are candidate novel defense- or rubber production-related genes.


FEBS Open Bio | 2016

A comparative proteomics study of a synovial cell line stimulated with TNF-α.

Seiji Shibasaki; Miki Karasaki; Shunsuke Aburaya; Hironobu Morisaka; Yumiko Takeda; Wataru Aoki; Sachie Kitano; Masayasu Kitano; Mitsuyoshi Ueda; Hajime Sano; T. Iwasaki

To elucidate the pathogenesis of rheumatoid arthritis (RA), we used proteomic analysis to determine the protein profile in a synovial cell line, MH7A, established from patients with RA. Proteins were extracted from MH7A cells that were or were not stimulated with tumor necrosis factor‐α (TNF‐α), and then analyzed on a liquid chromatography/mass spectrometry system equipped with a unique long monolithic silica capillary. On the basis of the results of this proteomic analysis, we identified 2650 proteins from untreated MH7A cells and 2688 proteins from MH7A cells stimulated with TNF‐α. Next, we selected 269 differentially produced proteins that were detected only under TNF‐α stimulation, and classified these proteins by performing gene ontology analysis by using DAVID as a functional annotation tool. In TNF‐α‐stimulated MH7A cells, we observed substantial production of plasminogen‐activator inhibitor 2 and apoptosis‐regulating proteins such as BH3‐interacting domain death agonist, autophagy protein 5, apolipoprotein E, and caspase‐3. These results indicate that the upregulation of plasminogen‐activator inhibitor 2 and apoptosis‐regulating proteins in synovial cells in response to TNF‐α stimulation might represent a predominant factor that contributes to the pathogenesis of RA.


Biochemistry | 2016

Reduction of Synthetic Ubiquinone QT Catalyzed by Bovine Mitochondrial Complex I Is Decoupled from Proton Translocation

Kenji Okuda; Masatoshi Murai; Shunsuke Aburaya; Wataru Aoki; Hideto Miyoshi

We previously succeeded in site-specific chemical modifications of the inner part of the quinone binding pocket of bovine mitochondrial complex I through ligand-directed tosylate (LDT) chemistry using specific inhibitors as high-affinity ligands for the enzyme [Masuya, T., et al. (2014) Biochemistry 53, 2304-2317, 7816-7823]. To investigate whether a short-chain ubiquinone, in place of these specific inhibitors, serves as a ligand for LDT chemistry, we herein synthesized a LDT reagent QT possessing ubiquinone scaffold and performed LDT chemistry with bovine heart submitochondrial particles (SMP). Detailed proteomic analyses revealed that QT properly guides the tosylate group into the quinone binding pocket and transfers a terminal alkyne to nucleophilic amino acids His150 and Asp160 in the 49 kDa subunit. This result clearly indicates that QT occupies the inner part of the quinone binding pocket. Nevertheless, we noted that QT is a unique electron acceptor from complex I distinct from typical short-chain ubiquinones such as ubiquinone-1 (Q1) for several reasons; for example, QT reduction in NADH-QT oxidoreduction was almost completely insensitive to quinone-site inhibitors (such as bullatacin and piericidin A), and this reaction did not produce a membrane potential. On the basis of detailed comparisons of the electron transfer features between QT and typical short-chain quinones, we conclude that QT may accept electrons from an N2 cluster at a position different from that of typical short-chain quinones because of its unique side-chain structure; accordingly, QT reduction is unable to induce putative structural changes inside the quinone binding pocket, which are critical for driving proton translocation. Thus, QT is the first ubiquinone analogue, to the best of our knowledge, the catalytic reduction of which is decoupled from proton translocation through the membrane domain. Implications for mechanistic studies on QT are also discussed.


AMB Express | 2016

Characteristic strategy of assimilation of various saccharides by Clostridium cellulovorans.

Takako Inamori; Shunsuke Aburaya; Hironobu Morisaka; Kouichi Kuroda; Mitsuyoshi Ueda

Clostridium cellulovorans can effectively assimilate not only cellulose but also hemicellulose by producing cellulosomal and non-cellulosomal enzymes. However, little is known about how C. cellulovorans assimilates various saccharides in media containing polysaccharides and oligosaccharides. In this research, we investigated the property of saccharide incorporation and assimilation by C. cellulovorans. Faster growth in media containing xylan and cellulose was achieved by switching polysaccharides, in which xylan was first assimilated, followed by cellulose. Furthermore, the presence of polysaccharides that can be easily degraded might increase the assimilation rate of lignocellulose by promoting growth. These properties of C. cellulovorans could be suitable for the effective utilization of lignocellulosic biomass.


Biochemistry | 2017

Pinpoint Chemical Modification of the Quinone-Access Channel of Mitochondrial Complex I via a Two-Step Conjugation Reaction

Takahiro Masuya; Masatoshi Murai; Takeshi Ito; Shunsuke Aburaya; Wataru Aoki; Hideto Miyoshi

We previously showed that a bulky ring-strained cycloalkyne possessing a rhodamine fluorophore directly reacts (via strain-promoted click chemistry) with the azido group incorporated (via ligand-directed tosyl chemistry) into Asp160 in the 49 kDa subunit of complex I in bovine heart submitochondrial particles [Masuya, T., et al. (2014) Biochemistry 53, 7816-7823]. This two-step conjugation may be a promising technique for specific chemical modifications of the quinone-access channel in complex I by various molecular probes, which would lead to new methodologies for studying the enzyme. However, because the reactivities of ring-strained cycloalkynes are generally high, they also react with other nucleophilic amino acids in mitochondrial proteins, resulting in significant undesired side reactions. To minimize side reactions and achieve precise pinpoint chemical modification of 49 kDa Asp160, we investigated an optimal pair of chemical tags for the two-step conjugation reaction. We found that instead of strain-promoted click chemistry, Diels-Alder cycloaddition of a pair of cyclopropene incorporated into 49 kDa Asp160 (via ligand-directed tosyl chemistry) and externally added tetrazine is more efficient for the pinpoint modification. An excess of quinone-site inhibitors did not interfere with Diels-Alder cycloaddition between the cyclopropene and tetrazine. These results along with the previous findings (cited above) strongly suggest that in contrast to the predicted quinone-access channel modeled by X-ray crystallographic and single-particle cryo-electron microscopic studies, the channel is open or undergoes large structural rearrangements to allow bulky ligands into the proximity of 49 kDa Asp160.


Biochemistry | 2016

Specific Methylation of Asp160 (49 kDa subunit) Located inside the Quinone Binding Cavity of Bovine Mitochondrial Complex I

Masatoshi Murai; Hiroyuki Inaoka; Takahiro Masuya; Shunsuke Aburaya; Wataru Aoki; Hideto Miyoshi

Asp160 in the 49 kDa subunit of bovine mitochondrial complex I, which is located in the inner part of the quinone binding cavity, is considered to be an essential residue for energy conversion of the enzyme. To elucidate the catalytic function of this residue, we attempted to specifically methylate 49 kDa Asp160 [Asp(COO)-CH3] through a ligand-directed tosyl (LDT) chemistry technique with an acetogenin derivative (ALM) as a high-affinity ligand. We confirmed the specific methylation of 49 kDa Asp160 through liquid chromatography-tandem mass spectrometry analysis of the tryptic digests of the 49 kDa subunit. The binding affinity of a quinazoline-type inhibitor ([(125)I]AzQ) occupying the quinone binding cavity was not affected by methylation, indicating that this chemical modification does not induce significant structural changes inside the quinone binding cavity. The methylation of 49 kDa Asp160 did not lead to the complete loss of catalytic activity; the modified enzyme retained partial electron transfer and proton translocation activities. These results along with the fact that 49 kDa Asp160 elicits a very strong nucleophilicity against various LDT reagents in the local protein environment strongly suggest that this residue is free from strict interactions (such as electrostatic interaction) arising from nearby residue(s) and is functionally important but not essential for the energy conversion of complex I.


Planta | 2018

Comparative multi-omics analysis reveals diverse latex-based defense strategies against pests among latex-producing organs of the fig tree ( Ficus carica )

Sakihito Kitajima; Wataru Aoki; Daisuke Shibata; Daisuke Nakajima; Nozomu Sakurai; Kazufumi Yazaki; Ryosuke Munakata; Toki Taira; Masaru Kobayashi; Shunsuke Aburaya; Eric Hyrmeya Savadogo; Susumu Hibino; Haruna Yano

Main conclusionLatexes in immature fruit, young petioles and lignified trunks of fig trees protect the plant using toxic proteins and metabolites in various organ-dependent ways.Latexes from plants contain high amounts of toxic proteins and metabolites, which attack microbes and herbivores after exudation at pest-induced wound sites. The protein and metabolite constituents of latexes are highly variable, depending on the plant species and organ. To determine the diversity of latex-based defense strategies in fig tree (Ficus carica) organs, we conducted comparative proteomic, transcriptomic and metabolomic analyses on latexes isolated from immature fruit, young petioles and lignified trunks of F. carica after constructing a unigene sequence library using RNA-seq data. Trypsin inhibitors were the most abundant proteins in petiole latex, while cysteine proteases (“ficins”) were the most abundant in immature fruit and trunk latexes. Galloylglycerol, a possible defense-related metabolite, appeared to be highly accumulated in all three latexes. The expression levels of pathogenesis-related proteins were highest in the latex of trunk, suggesting that this latex had adapted a defensive role against microbe attacks. Although young petioles and immature fruit are both unlignified soft organs, and potential food for herbivorous insects, unigenes for the sesquiterpenoid pathway, which likely produces defense-associated volatiles, and the phenylpropanoid pathway, which produces toxic furanocoumarins, were expressed less in immature fruit latex. This difference may indicate that while petioles and fruit protect the plant from attack by herbivores, the fruit must also attract insect pollinators at younger stages and animals after ripening. We also suggest possible candidate transcription factors and signal transduction proteins that are involved in the differential expression of the unigenes.


Plant and Cell Physiology | 2018

Comparative Proteomic Analysis of Lithospermum erythrorhizon Reveals Regulation of a Variety of Metabolic Enzymes Leading to Comprehensive Understanding of the Shikonin Biosynthetic Pathway

Kojiro Takanashi; Yukimi Nakagawa; Shunsuke Aburaya; Kenta Kaminade; Wataru Aoki; Yuka Saida-Munakata; Akifumi Sugiyama; Mitsuyoshi Ueda; Kazufumi Yazaki

Plants produce a large variety of specialized (secondary) metabolites having a wide range of hydrophobicity. Shikonin, a red naphthoquinone pigment, is a highly hydrophobic metabolite produced in the roots of Lithospermum erythrorhizon, a medicinal plant in the family Boraginaceae. The shikonin molecule is formed by the coupling of p-hydroxybenzoic acid and geranyl diphosphate, catalyzed by a membrane-bound geranyltransferase LePGT at the endoplasmic reticulum, followed by cyclization of the geranyl chain and oxidations; the latter half of this biosynthetic pathway, however, has not yet been clarified. To shed light on these steps, a proteome analysis was conducted. Shikonin production in vitro was specifically regulated by illumination and by the difference in media used to culture cells and hairy roots. In intact plants, however, shikonin is produced exclusively in the root bark of L. erythrorhizon. These features were utilized for comparative transcriptome and proteome analyses. As the genome sequence is not known for this medicinal plant, sequences from de novo RNA-seq data with 95,861 contigs were used as reference for proteome analysis. Because shikonin biosynthesis requires copper ions and is sensitive to blue light, this methodology identified strong candidates for enzymes involved in shikonin biosynthesis, such as polyphenol oxidase, cannabidiolic acid synthase-like and neomenthol dehydrogenase-like proteins. Because acetylshikonin is the main end product of shikonin derivatives, an O-acetyltransferase was also identified. This enzyme may be responsible for end product formation in these plant species. Taken together, these findings suggest a putative pathway for shikonin biosynthesis.

Collaboration


Dive into the Shunsuke Aburaya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge