Shyam Prakash
Indian Agricultural Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shyam Prakash.
Theoretical and Applied Genetics | 1994
A. Jain; Sabhyata Bhatia; S. S. Banga; Shyam Prakash; Malathi Lakshmikumaran
RAPD assays were performed, using 34 arbitrary decamer oligonucleotide primers and six combinations of two primers, to detect inherent variations and genetic relationships among 12 Indian and 11 exotic B. juncea genotypes. Of 595 amplification products identified, 500 of them were polymorphic across all genotypes. A low level of genetic variability was detected among the Indian genotypes, while considerable polymorphism was present among the exotic ones. Based on the pair-wise comparisons of amplification products the genetic similarity was calculated using Jaccards similarity coefficients and a dendrogram was constructed using an unweighted pair group method was arithmetical averages (UPGMA). On the basis of this analysis the genotypes were clustered into two groups, A and B. Group A comprised only exotic genotypes, whereas all the Indian genotypes and four of the exotic genotypes were clustered in group B. Almost similar genotypic rankings could also be established by computing as few as 200 amplification products. In general, a high per cent of heterosis was recorded in crosses involving Indian x exotic genotypes. On the other hand, when crosses were made amongst Indian or exotic genotypes, about 80% of them exhibited negative heterosis. Results from this study indicate that, despite the lack of direct correlation between the genetic distance and the degree of heterosis, genetic diversity forms a very useful guide not only for investigating the relationships among Brassica genotypes but also in the selection of parents for heterotic hybrid combinations.
Developments in Plant Genetics and Breeding | 1999
César Gómez-Campo; Shyam Prakash
Publisher Summary This chapter discusses the evolutionary origin of the members of Brassica coenospecies. Alloploid species— B. carinata , B. juncea and B. napus —originated multiple natural interspecific hybridizations. Natural hybridizations are always unidirectional as revealed by the studies on Fraction-I protein and cp DNA restriction patterns, which established that B. nigra and B. rapa are the cytoplasmic donors of B. carinata and B. juncea respectively, while in B. napus, there is a slightly altered B. oleracea cytoplasm. The close similarity in cp DNA of diploids and alloploids suggests that alloploids are of recent origin. A survey of rDNA of the allotetraploid species led to propose that B. juncea was the first to evolve and B. napus and B. carinata originated later. This agrees with the delayed entrance of B. oleracea in the agricultural world. Amount of DNA in tetraploids has not changed significantly since their origin, though there has been a reduction in nuclear size, probably because of the higher DNA density resulting from greater condensation of chromosome material. Nuclear DNA composition of alloploid species is closely related to the maternal cytoplasmic donors than to the male parents.
Theoretical and Applied Genetics | 1992
Akshay Kumar Pradhan; Shyam Prakash; Arundhati Mukhopadhyay; Deepak Pental
SummaryChloroplast DNA (cpDNA) variability of 60 taxa of the genus Brassica and allied genera comprising 50 species was studied. RFLPs for seven enzymes were generated and F values were estimated from five frequently cutting enzymes. Phenetic clusterings indicated a clear division of Brassica coenospecies into two distinct lineages referred to as the Brassica and Sinapis lineages. Two unexplored genera, Diplotaxis and Erucastrum, also exhibited two lineages in addition to the genera Brassica and Sinapis. This finding is inconsistent with the existing taxonomic classification based on morphology. Mitochondrial DNA (mtDNA) variability studied from EcoRI RFLP patterns, by hybridizing total DNA with four cosmid clones containing non-overlapping mtDNA fragments, did not show any congruence with cpDNA variation patterns. However, at the cytodeme level, the patterns of genetic divergence suggested by the cpDNA data could be correlated with mtDNA variation. In the Brassica lineage, Diplotaxis viminea was identified as the female parent of the allotetraploid D. muralis. The chloroplast DNAs of Erucastrum strigosum and Er. abyssinicum were found to be very closely related. In the Sinapis lineage, Brassica maurorum was found to be the diploid progenitor of autotetraploid B. cossoneana. B. amplexicaulis showed a very different cpDNA pattern from other members of the subtribe. Brassica adpressa was closest to Erucastrum laevigatum and could be the diploid progenitor of autotetraploid Er. laevigatum. Based on the close similarity of the cpDNA pattern of Diplotaxis siifolia with that of D. assurgens, we have proposed the retention of this species in the genus Diplotaxis. The taxonomic positions of some other species have also been discussed.
Theoretical and Applied Genetics | 1990
Shyam Prakash; V. L. Chopra
SummarySynthetic alloploid Brassica oxyrrhina (2n = 18, OO) x B. campestris (2n = 20, AA) was repeatedly backcrossed with B. campestris to place B. campestris nucleus in the cytoplasm of B. oxyrrhina. Alloplasmic plants, obtained in BC5 generation, were stably male sterile but mildly chlorotic during initial development. Synthetic alloploid B. oxyrrhina-campestris was also hybridized with B. juncea to transfer B. oxyrrhina cytoplasm. Segregation for green and chlorotic plants was observed in BC1 and BC2 generations. By selection, however, normal green male sterile B. juncea was obtained in BC3. Pollen abortion in both B. campestris and B. juncea is post-meiotic.
Euphytica | 2002
Girish Sharma; V. Dinesh Kumar; A. Haque; S. R. Bhat; Shyam Prakash; V. L. Chopra
Development of leaf spot resistant mustard cultivars is a relevant objective in view of heavy crop losses caused by this pathogen. Thirty-eight species belonging to 9 genera, including cultivated and wild allies, of the genus Brassica were evaluated under epiphytotic conditions for two years. Inoculations were done on whole plants (in vivo) and on detached leaves (in vitro). Data on incubation period, number of lesions per leaf, lesion size and leaf area covered by lesions were recorded. Species which never produced disease symptoms throughout the growing period in pots and until 72 hours after inoculation in detached leaf assays during both years were treated as resistant, while those that produced symptoms were classified as moderately resistant, susceptible or highly susceptible depending upon incubation period, size of lesions and leaf area covered by disease symptoms. Eight species (Brassica desnottesii, Camelina sativa, Coincya pseuderucastrum, Diplotaxis berthautii, D. catholica, D. cretacea, D. erucoides, and Erucastrum gallicum) were found completely resistant, whereas others were classified as moderately resistant (12), susceptible (11) or highly susceptible (9). Since resistance is unavailable within the cultivated species, these 8 resistant wild species could be used as donor parents for introgressing resistance to leaf spot disease in Indian mustard.
Theoretical and Applied Genetics | 1995
P. B. Kirti; S. S. Banga; Shyam Prakash; V. L. Chopra
Male sterility conferred by ogu cytoplasm of Raphanus sativus has been transferred to Brassica juncea cv ‘RLM 198’ from male-sterile B. napus through repeated backcrossing and selection. The male-sterile B. juncea is, however, highly chlorotic and late. It has low female (seed) fertility and small contorted pods. To rectify these defects, protoplasts of the male sterile were fused with normal ‘RLM 198’ (green, self fertile). Four dark green, completely male-sterile plants were obtained and identified as putative cybrids. All the plants were backcrossed three times with ‘RLM 198’. Mitochondrial and chloroplast DNA analysis of backcross progeny confirmed hybridity of the cytoplasm. The restriction pattern of the chloroplast DNA of progeny plants of three cybrids (Og 1, Og 2, Og 3) was similar to that of the green self-fertile ‘RLM 198’ and indicated that the correction of chlorosis resulted from chloroplast substitution. The chloroplast DNA of the lone progeny plant of the fourth cybrid (Og 10) could not be analyzed because the plant was stunted and had only a few leaves. When total cellular DNA was probed with mitochondrial probes coxI and atpA it was found that the cybrids had recombinant mitochondria. The chlorosis-corrected plants were early flowering and had vastly improved seed fertility.
Theoretical and Applied Genetics | 1990
V. Batra; Shyam Prakash; K. R. Shivanna
SummaryAttempts were made to obtain intergeneric hybrids between Diplotaxis siifolia, a wild species, and cultivars of Brassica (B. campestris, B. juncea, and B. napus). The crosses showed unilateral incompatibility. When the wild species was used as female parent, pollen germination and pollen tube growth were normal, but hybrid seeds aborted due to post-fertilization barriers. Reciprocal crosses (cultivars as female parent) showed strong pre-fertilization barriers; although pollen grains showed germination, pollen tubes failed to enter the stigma. Hybrids were realized in two of the crosses, D. siifolia x B. juncea and D. siifolia x B. napus, through ovary culture. The hybrids were multiplied in vitro by multiplication of axillary shoots, or somatic embryogenesis. Detailed studies were carried out on the hybrid D. siifolia x B. juncea. F1 hybrids had shrivelled anthers and were pollen sterile. Amphiploids of this hybrid showed 60% pollen fertility and produced seeds upon self-pollination as well as backcross pollination with the pollen of B. juncea.
Plant Cell Reports | 1995
P. B. Kirti; T. Mohapatra; Harjeet Khanna; Shyam Prakash; V. L. Chopra
SummaryIntergeneric somatic hybrids Diplotaxis catholica (2n=18) + Brassica juncea (2n=36) were produced by fusing mesophyll protoplasts of the former and hypocotyl protoplasts of the latter using polyethylene glycol. Out of 52 somatic embryos, 24 produced plants of intermediate morphology. Cytological analysis of 16 plants indicated that 15 were symmetric hybrids carrying 54 chromosomes, the sum of the parental chromosome numbers. One hybrid was asymmetric with 45 chromosomes. Nuclear hybridity of five putative hybrids was confirmed by the Southern hybridization pattern of full length 18s-25s wheat nuclear rDNA probe which revealed the presence of Hind III fragments characteristic of both the parental species. The hybridization pattern of mitochondria specific gene probe cox I indicated that three of the hybrids carried B. juncea mitochondria and one carried mitochondria of D. catholica. Presence of novel 3.5 kb Hind III and 4.8 kb Bgl II fragments suggested the occurrence of mtDNA recombination in one of the hybrids. The hybrids were pollen sterile. However, seeds were obtained from most of the hybrids by back crossing with B. juncea.
Plant Cell Reports | 1991
P. B. Kirti; Shyam Prakash; V. L. Chopra
Hypocotyl derived protoplasts of B. juncea cv. RLM-198 were fused with mesophyll protoplasts of B. spinescens using polyethylene glycol to produce interspecific hybrids. Fusion products could be microscopically identified by characteristics of the protoplasts of both parents in the hybrid cells; they are colourless and vacuolated like the hypocotyl protoplasts and possess chloroplasts of the mesophyll protoplasts. The heterokaryotic fusion frequency was around 5%. However, the frequency of calli regenerating hybrid shoots was more than 10% of the regenerating calli. Putative somatic hybrids had morphological features characteristic of both the parents. Twelve plants analysed cytologically, possessed 52 chromosomes (26II) at meiosis representing the complete genomes of B. juncea (18II) and B. spinescens (8II). For esterase isozymes, the hybrids had bands of Doth the parents. Hybrid nature of some of the plants was confirmed by their close resemblance to B. juncea, chromosome number and isozyme bands of B. spinescens as in Rsp-19. Somatic hybrids had rudimentary, non-dehiscent anthers and completely sterile pollen. However, on back crossing with B. juncea, 10 out of 12 plants produced seeds and about 100 plants were realized.
Euphytica | 1973
Shyam Prakash
SummaryMeiotic behaviour of haploid plants of Brassica nigra which arose parthenogenetically amongst the progeny of B. nigra × B. campestris, is described. The presence of two bivalents and s-s associations suggests the basic chromosome number w as six and the present x=8 number arose through the duplication of two of the original chromosomes.