Shyamasree Datta
Cleveland Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shyamasree Datta.
Journal of Immunology | 2008
Shyamasree Datta; Roopa Biswas; Michael Novotny; Paul G. Pavicic; Tomasz Herjan; Palash Mandal; Thomas A. Hamilton
mRNAs encoding proinflammatory chemokines are regulated posttranscriptionally via adenine-uridine-rich sequences (AREs) located in the 3′ untranslated region of the message, which are recognized by sequence-specific RNA-binding proteins. One ARE binding protein, tristetraprolin (TTP), has been implicated in regulating the stability of several ARE-containing mRNAs, including those encoding TNF-α and GM-CSF. In the present report we examined the role of TTP in regulating the decay of the mouse chemokine KC (CXCL1) mRNA. Using tetR-regulated control of transcription in TTP-deficient HEK293 cells, KC mRNA half-life was markedly decreased in the presence of TTP. Deletion and site-specific mutagenesis were used to identify multiple AUUUA sequence determinants responsible for TTP sensitivity. Although a number of studies suggest that the destabilizing activity of TTP is subject to modulation in response to ligands of Toll/IL-1 family receptors, decay mediated by TTP in 293 cells was not sensitive to stimulation with IL-1α. Using primary macrophages from wild-type and TTP-deficient mice, KC mRNA instability was found to be highly dependent on TTP. Furthermore, LPS-mediated stabilization of KC mRNA is blocked by inhibition of the p38 MAPK in macrophages from wild-type but not TTP-deficient mice. These findings demonstrate that TTP is the predominant regulator of KC mRNA decay in mononuclear phagocytes acting via multiple 3′-untranslated region-localized AREs. Nevertheless, KC mRNA remains highly unstable in cells that do not express TTP, suggesting that additional determinants of instability and stimulus sensitivity may operate in cell populations where TTP is not expressed.
Journal of Immunology | 2003
Roopa Biswas; Shyamasree Datta; Jaydip Das Gupta; Michael Novotny; Julie M. Tebo; Thomas A. Hamilton
IL-10 has been reported to inhibit the expression of LPS-induced proinflammatory cytokines and chemokines by altering the rate of specific mRNA decay although the molecular target(s) for its action remain unknown. In the present study, using primary peritoneal exudate macrophages and a cell culture model in which a tetracycline-responsive promoter controls transcription of CXC ligand 1 (KC) mRNA, we demonstrate that LPS promotes a time-dependent increase in KC mRNA stability. Although IL-10 had no direct effect on mRNA decay, this treatment antagonized the stabilizing action of LPS. The mechanisms involved were further explored using a cell-free mRNA degradation system. A 5′-capped, polyadenylated in vitro transcript derived from the 3′-untranslated region of KC mRNA exhibited time-dependent decay in the presence of protein extracts prepared from untreated RAW264.7 macrophages. Extracts prepared from LPS-treated RAW264.7 cells had reduced decay activity and this change was antagonized if the cells were costimulated with IL-10. A substrate in which the AU-rich element motifs were mutated exhibited minimal decay that did not vary using extracts prepared from cells treated with LPS or LPS and IL-10. A nonadenylated RNA substrate was also degraded and that activity was diminished by LPS. In concert, these findings demonstrate that KC mRNA stability is regulated by LPS-induced alterations in activities that govern both deadenylation and degradation of the mRNA body. The effects of IL-10 on KC mRNA stability reflect antagonism of the response to LPS.
Journal of Immunology | 2010
Shyamasree Datta; Michael Novotny; Paul G. Pavicic; Chenyang Zhao; Tomasz Herjan; Justin Hartupee; Thomas A. Hamilton
IL-17 contributes to inflammatory response in part by promoting enhanced expression of chemokines, such as CXCL1, by prolonging the t1/2 of this constitutively unstable mRNA. Although IL-17 is a weak stimulus for transcription of the CXCL1 gene, it strongly potentiates message accumulation via stabilization when the mRNA is transcribed in cells stimulated with TNF. In myeloid cells, LPS-induced CXCL1 mRNA stabilization is dependent on AUUUA-containing sequence motifs that are recognized by the RNA binding protein tristetraprolin (TTP). Using deletion and site-specific mutagenesis, we report that IL-17–mediated stabilization of CXCL1 mRNA in nonmyeloid cells depends on a sequence that does not contain the AUUUA motif. Furthermore, a specific two-nucleotide mutation within this region markedly abrogates sensitivity for IL-17–mediated stabilization. Consistent with this finding, the IL-17–sensitive sequence does not exhibit increased instability in the presence of TTP, and CXCL1 mRNA remains unstable and can be stabilized in response to treatment with IL-17 in embryo fibroblasts from mice in which the TTP gene has been deleted. Whereas the RNA binding protein KSRP has been shown to participate in regulating the instability of human CXCL8 mRNA, inhibitory RNA-based reduction in KSRP does not effect the instability mediated by the IL-17–sensitive sequence motif. These findings suggest that IL-17–mediated chemokine mRNA stabilization in nonmyeloid cells uses a mechanism that is distinct from that operating to control AU-rich mRNA stability in myeloid cells.
Frontiers in Immunology | 2014
Thomas A. Hamilton; Chenyang Zhao; Paul G. Pavicic; Shyamasree Datta
The scope of functional heterogeneity in macrophages has been defined by two polarized end states known as M1 and M2, which exhibit the proinflammatory activities necessary for host defense and the tissue repair activities required for restoration of homeostasis, respectively. Macrophage populations in different tissue locations exist in distinct phenotypic states across this M1/M2 spectrum and the development and abundance of individual subsets result from the local and systemic action of myeloid colony-stimulating factors (CSFs) including M-CSF and GM-CSF. These factors have relatively non-overlapping roles in the differentiation and maintenance of specific macrophage subsets. Furthermore, there is now evidence that CSFs may also regulate macrophage phenotype during challenge. Cell culture studies from multiple laboratories demonstrate that macrophages developed in the presence of GM-CSF exhibit amplified response to M1 polarizing stimuli while M-CSF potentiates responses to M2 stimuli. As a consequence, these factors can be important determinants of the magnitude and duration of both acute and chronic inflammatory pathology and may, therefore, be potential targets for therapeutic manipulation in specific human disease settings.
Journal of Leukocyte Biology | 2007
Thomas A. Hamilton; Michael Novotny; Shyamasree Datta; Palash Mandal; Justin Hartupee; Julie M. Tebo; Xiaoxia Li
The magnitude and character of the inflammatory process are determined in part via the trafficking of leukocytes into sites of injury and infection, and this process depends on proper control of the expression of genes encoding chemoattractant peptides and their receptors. Although these controls operate at multiple mechanistic levels, recent evidence indicates that post‐transcriptional events governing the half‐life of select mRNAs are important determinants. Adenine‐uridine rich elements (AREs) located within 3′ untranslated regions (UTRs) confer constitutive mRNA instability and in some cases, stabilization following stimulation by ligands of the Toll‐IL‐1 receptor (TIR) family. Although the importance of AREs in determining activity and mRNA half‐life is well‐recognized, the mechanistic scope and diversity remain poorly understood. Using the mouse KC or CXCL1 gene as a model, we have demonstrated that the abundance of mRNA and protein produced during an inflammatory response depends on multiple mechanistically distinct AREs present in the 3′ UTR of the mRNA. The mRNA encoding the receptor for N‐terminal formyl‐methionine‐containing peptides is also unstable and subject to stabilization in response to TIR ligands. These two models can, however, be readily distinguished from one another on the basis of specific stimulus sensitivity and the signaling pathways, through which such stimuli couple to the control of mRNA decay. These models demonstrate the substantial diversity operative in the post‐transcriptional regulation of inflammatory gene expression.
Journal of Immunology | 2004
Shyamasree Datta; Michael Novotny; Xiaoxia Li; Julie M. Tebo; Thomas A. Hamilton
Several ligands for Toll IL-1R (TIR) family are known to promote stabilization of a subset of short-lived mRNAs containing AU-rich elements (AREs) in their 3′ untranslated regions. It is now evident however, that members of the TIR family may use distinct intracellular signaling pathways to achieve a spectrum of biological end points. Using human embryonic kidney 293 cells transfected to express different TIRs we now report that signals initiated through IL-1R1 or TLR4 but not TLR3 can promote the stabilization of unstable chemokine mRNAs. Similar results were obtained when signaling from endogenous receptors was examined using a mouse endothelial cell line (H5V). The ability of TIR family members to stabilize ARE-containing mRNAs results from their differential use of signaling adaptors MyD88, MyD88 adaptor-like protein, Toll receptor IFN-inducing factor (Trif), and Trif-related adaptor molecule. Overexpression of MyD88 or MyD88 adaptor-like protein was able to promote enhanced stability of ARE-containing mRNA, whereas Trif and Trif-related adaptor molecule exhibited markedly reduced capacity. Hence the ability of TIRs to signal stabilization of mRNA appears to be linked to the MyD88-dependent signaling pathway.
Journal of Leukocyte Biology | 2012
Thomas A. Hamilton; Xiaoxia Li; Michael Novotny; Paul G. Pavicic; Shyamasree Datta; Chenyang Zhao; Justin Hartupee; Dongxu Sun
mRNAs encoding inflammatory chemokines that recruit neutrophils frequently exhibit short half‐lives that serve to limit their expression under inappropriate conditions but are often prolonged to ensure adequate levels during inflammatory response. Extracellular stimuli that modulate the stability of such mRNAs may be the same as the transcriptional activator, as is the case with TLR ligands, or may cooperate with independent transcriptional stimuli, as with IL‐17, which extends the half‐life of TNF‐induced transcripts. These different stimuli engage independent signaling pathways that target different instability mechanisms distinguished by dependence on different regulatory nucleotide sequence motifs within the 3′UTRs, which involve that action of different mRNA‐binding proteins. The selective use of these pathways by different stimuli and in distinct cell populations provides the potential for tailoring of chemokine expression patterns to meet specific needs in different pathophysiologic circumstances.
Journal of Biological Chemistry | 2005
Michael Novotny; Shyamasree Datta; Roopa Biswas; Thomas A. Hamilton
Certain pro-inflammatory chemokine mRNAs containing adenine/uridine-rich sequence elements (AREs) in their 3′ untranslated regions (3′-UTRs) are known to exhibit constitutive instability and sensitivity to proinflammatory stimuli resulting in the stabilization of the message. Using tetR-regulated transcription we now show that the 3′-UTR of the mouse CXCL1 (KC) mRNA contains at least two ARE motifs that are structurally and functionally distinct. A fragment of 77 nucleotides containing 4 clustered AUUUA pentamers located at the 5′-end of the KC 3′-UTR is only modestly unstable yet promotes markedly enhanced, post-transcriptional protein production in response to either interleukin-1α (IL-1α) or lipopolysaccharide (LPS), suggesting translational regulation. In contrast, a fragment containing 3 isolated AUUUA pentamers corresponding to the residual 3′ 400 nucleotides of the KC 3′-UTR confers both instability and is stabilized in response to IL-1α. Although the clustered AUUUA pentamers in the upstream region are required for stimulus sensitivity, mutation of all three pentamers in the downstream region has little or no effect on either instability or stimulus sensitivity. The upstream region is comparably stabilized in response to either IL-1α or LPS, whereas the AUUUA-independent downstream determinant is differentially more sensitive to IL-1α. Finally, using UV-induced RNA cross-linking, these functionally independent sequences exhibit different patterns of interaction with RNA-binding proteins. Collectively, these findings document the presence of multiple independent determinants of KC mRNA function and demonstrate that these operate via distinct mechanisms.
Journal of Biological Chemistry | 2010
Chenyang Zhao; Shyamasree Datta; Palash Mandal; Shuqing Xu; Thomas A. Hamilton
In this report, we demonstrate that cellular stress regulates expression of IFRD1 by a post-transcriptional control mechanism. IFRD1 mRNA and protein are elevated in tunicamycin-treated human kidney epithelial cells via stabilization of the mRNA. IFRD1 mRNA instability in resting cells requires translation of an upstream open reading frame (ORF) that represses translation of the major ORF. During stress response, the mRNA is stabilized via inhibition of translational initiation mediated by phosphorylated eIF2α. Translation of the major ORF of IFRD1 involves both leaky scanning at the upstream AUG codon and re-initiation at the major AUG codon and is not altered during stress. Finally, the instability mechanism depends upon UPF1, suggesting that it is related to nonsense-mediated decay. Importantly, the sequence and length of the upstream ORF are critical but do not need to code for a specific peptide. Moreover the sequence environment of the upstream ORF termination site is not an essential feature of instability. These features of decay collectively define a distinct upstream ORF-mediated instability mechanism whereby cellular stress can modulate specific gene expression through alteration of mRNA half-life.
Journal of Immunology | 2014
Chenyang Zhao; Paul G. Pavicic; Shyamasree Datta; Dongxu Sun; Michael Novotny; Thomas A. Hamilton
The impact of environmental stressors on the magnitude of specific chemokine gene expression was examined in mouse bone marrow–derived macrophages stimulated through various TLRs. Levels of TLR-stimulated CXCL1 and CXCL2 but not CXCL10 or CCL5 mRNAs were selectively enhanced (>10-fold) in stressed macrophages. The amplification was also manifested for other proinflammatory cytokines, including TNF-α, IL-1α, and IL-6. Responses through TLR3 and TLR4 exhibited the greatest sensitivity, reflecting a requirement for Toll/IL-IR domain–containing adaptor-inducing IFN-β (TRIF), the adaptor protein selectively associated with these TLRs. IFN regulatory factor 3, a transcription factor that is downstream of TLR4/TRIF signaling, was not required for sensitivity to stress-induced chemokine amplification. c/EBP homologous protein and X box binding protein 1 have been reported to enhance inflammatory cytokine responses but are not required for amplification of TLR3/4-induced CXCL1 expression. Rather, receptor-interacting protein kinase 1, a kinase also linked with TLR3/4/TRIF signaling, is required and involves a stress-dependent increase in its abundance and ubiquitination. Whereas NF-κB activation is necessary for TLR-induced chemokine gene transcription, this factor does not appear to be the primary mechanistic target of environmental stress. The application of stress also enhanced chemokine expression in macrophages infiltrating the peritoneal cavity but was not observed in the resident peritoneal cells or in the liver. These findings identify novel mechanisms for modulating the magnitude and duration of selective TLR-induced chemokine and cytokine gene expression and further establish the importance of cell stress pathways in coordinating the outcomes of cellular and tissue injury.