Shyh-Han Tan
Uniformed Services University of the Health Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shyh-Han Tan.
Journal of Cell Biology | 2002
Jomon Joseph; Shyh-Han Tan; Tatiana S. Karpova; James G. McNally; Mary Dasso
RanGAP1 was the first documented substrate for conjugation with the ubiquitin-like protein SUMO-1. However, the functional significance of this conjugation has not been fully clarified. We sought to examine RanGAP1 behavior during mitosis. We found that RanGAP1 associates with mitotic spindles and that it is particularly concentrated at foci near kinetochores. Association with kinetochores appeared soon after nuclear envelope breakdown and persisted until late anaphase, but it was lost coincident with nuclear envelope assembly in telophase. A mutant RanGAP1 protein lacking the capacity to be conjugated to SUMO-1 no longer associated with spindles, indicating that conjugation was essential for RanGAP1s mitotic localization. RanBP2, a nuclear pore protein that binds SUMO-1–conjugated RanGAP1 during interphase, colocalized with RanGAP1 on spindles, suggesting that a complex between these two proteins may be involved in mitotic targeting of RanGAP1. This report shows for the first time that SUMO-1 conjugation is required for mitotic localization of RanGAP1, and suggests that a major role of SUMO-1 conjugation to RanGAP1 may be the spatial regulation of the Ran pathway during mitosis.
The American Journal of Surgical Pathology | 2011
Markku Miettinen; Zengfeng Wang; Anders Paetau; Shyh-Han Tan; Albert Dobi; Shiv Srivastava; Isabell A. Sesterhenn
ERG, an ETS family transcription factor, is known to be expressed in endothelial cells, and oncogenic ERG gene fusions occur in subsets of prostatic carcinoma, acute myeloid leukemia, and Ewing sarcoma. In this study, we immunohistochemically investigated nuclear ERG expression using a new monoclonal antibody, CPDR ERG-MAb, that is highly specific for detecting ERG protein and ERG-expressing prostate carcinomas. A broad range of vascular endothelial (n=250), other mesenchymal (n=973), and epithelial tumors (n=657) was examined to determine the use of ERG immunohistochemistry in surgical pathology. Only immunostains with ERG-positive normal endothelia (internal control) were considered valid, and only nuclear staining was considered to be positive. In adult tissues, ERG was restricted to endothelial cells and to a subset of bone marrow precursors, but early fetal mesenchyme and subpopulations of fetal cartilage were also positive. In vascular tumors, ERG was expressed in endothelia of all hemangiomas and lymphangiomas, and typically extensively expressed in 96 of 100 angiosarcomas, 42 of 43 epithelioid hemangioendotheliomas, and all 26 Kaposi sarcomas. Among nonvascular mesenchymal tumors, only blastic extramedullary myeloid tumors (7 of 10) and rare Ewing sarcomas (2 of 29) were positive. Among epithelial tumors, 30 of 66 prostatic adenocarcinomas showed focal-to-extensive ERG positivity, with no immunoreactivity in the normal prostate. Other carcinomas and epithelial tumors (n=643) were ERG negative, with the exception of 1 of 42 large cell undifferentiated pulmonary carcinomas and 1 of 27 mesotheliomas, each of which showed focal nuclear ERG positivity. On the basis of the above observations, ERG is a highly specific new marker for benign and malignant vascular tumors. Among epithelial tumors, ERG shows a great promise as a marker to identify prostatic carcinoma in both primary and metastatic settings.
Prostate Cancer and Prostatic Diseases | 2010
Bungo Furusato; Shyh-Han Tan; Denise Young; Albert Dobi; Chen Sun; Ahmed Mohamed; Rajesh Thangapazham; Yongmei Chen; McMaster G; Taduru Sreenath; Gyorgy Petrovics; David G. McLeod; Sudhir Srivastava; I A Sesterhenn
Gene fusions prevalent in prostate cancer (CaP) lead to the elevated expression of the ERG proto-oncogene. ERG activation present in 50–70% of prostate tumors underscores one of the most common oncogenic alterations in CaP. Despite numerous reports of gene fusions and mRNA expression, ERG oncoprotein status in CaP still remains to be defined. Furthermore, development of ERG protein-based assays may provide a new dimension to evaluation of gene fusions involving diverse androgen-regulated promoters and the ERG protein-coding sequence. Through exhaustive evaluations of 132 whole-mount prostates (261 tumor foci and over 200 000 benign glands) for the ERG oncoprotein nuclear expression, we demonstrated 99.9% specificity for detecting prostate tumor cells using a highly specific anti-ERG monoclonal antibody. The ERG oncoprotein expression correlated well with fusion transcript or gene fusion in randomly selected specimens. Strong concordance of ERG-positive foci of prostatic intraepithelial neoplasia (PIN) with ERG-positive carcinoma (82 out of 85 sections with PIN, 96.5%) affirms the biological role of ERG in clonal selection of prostate tumors in 65% (86 out of 132) of patients. Conversely, ERG negative PINs were associated with ERG-negative carcinoma. Taken together, the homogeneous and strong ERG expression detected in individual tumors establishes the potential for ERG oncoprotein-based stratification of CaP.
Journal of Cell Biology | 2006
Debaditya Mukhopadhyay; Ferhan Ayaydin; Nagamalleswari Kolli; Shyh-Han Tan; Tadashi Anan; Ai Kametaka; Yoshiaki Azuma; Keith D. Wilkinson; Mary Dasso
Small ubiquitin-related modifier (SUMO) processing and deconjugation are mediated by sentrin-specific proteases/ubiquitin-like proteases (SENP/Ulps). We show that SUMO-specific protease 1 (SUSP1), a mammalian SENP/Ulp, localizes within the nucleoplasm. SUSP1 depletion within cell lines expressing enhanced green fluorescent protein (EGFP) fusions to individual SUMO paralogues caused redistribution of EGFP-SUMO2 and -SUMO3, particularly into promyelocytic leukemia (PML) bodies. Further analysis suggested that this change resulted primarily from a deficit of SUMO2/3-deconjugation activity. Under these circumstances, PML bodies became enlarged and increased in number. We did not observe a comparable redistribution of EGFP-SUMO1. We have investigated the specificity of SUSP1 using vinyl sulfone inhibitors and model substrates. We found that SUSP1 has a strong paralogue bias toward SUMO2/3 and that it acts preferentially on substrates containing three or more SUMO2/3 moieties. Together, our findings argue that SUSP1 may play a specialized role in dismantling highly conjugated SUMO2 and -3 species that is critical for PML body maintenance.
Endocrine-related Cancer | 2008
Shyh-Han Tan; Marja T. Nevalainen
Protein kinase signaling pathways, such as Janus kinase 2-Signal transducer and activator of transcription 5A/B (JAK2-STAT5A/B), are of significant interest in the search for new therapeutic strategies in both breast and prostate cancers. In prostate cancer, the components of the JAK2-STAT5A/B signaling pathway provide molecular targets for small-molecule inhibition of survival and growth signals of the cells. At the same time, new evidence suggests that the STAT5A/B signaling pathway is involved in the transition of organ-confined prostate cancer to hormone-refractory disease. This implies that the active JAK2-STAT5A/B signaling pathway potentially provides the means for pharmacological intervention of clinical prostate cancer progression. In addition, active STAT5A/B may serve as a prognostic marker for identification of those primary prostate cancers that are likely to progress to aggressive disease. In breast cancer, the role of STAT5A/B is more complex. STAT5A/B may have a dual role in the regulation of malignant mammary epithelium. Data accumulated from mouse models of breast cancer suggest that in early stages of breast cancer STAT5A/B may promote malignant transformation and enhance growth of the tumor. This is in contrast to established breast cancer, where STAT5A/B may mediate the critical cues for maintaining the differentiation of mammary epithelium. In addition, present data suggest that activation of STAT5A/B in breast cancer predicts favorable clinical outcome. The dual nature of STAT5A/B action in breast cancer makes the therapeutic use of STAT5 A/B more complex.
Cancer Research | 2008
Shyh-Han Tan; Ayush Dagvadorj; Feng Shen; Lei Gu; Zhiyong Liao; Junaid Abdulghani; Ying Zhang; Edward P. Gelmann; Tobias Zellweger; Zoran Culig; Tapio Visakorpi; Lukas Bubendorf; Robert A. Kirken; James G. Karras; Marja T. Nevalainen
The molecular mechanisms underlying progression of prostate cancer to the hormone-independent state are poorly understood. Signal transducer and activator of transcription 5a and 5b (Stat5a/b) is critical for the viability of human prostate cancer cells. We have previously shown that Stat5a/b is constitutively active in high-grade human prostate cancer, but not in normal prostate epithelium. Furthermore, activation of Stat5a/b in primary human prostate cancer predicted early disease recurrence. We show here that transcription factor Stat5a/b is active in 95% of clinical hormone-refractory human prostate cancers. We show for the first time that Stat5a/b synergizes with androgen receptor (AR) in prostate cancer cells. Specifically, active Stat5a/b increases transcriptional activity of AR, and AR, in turn, increases transcriptional activity of Stat5a/b. Liganded AR and active Stat5a/b physically interact in prostate cancer cells and, importantly, enhance nuclear localization of each other. The work presented here provides the first evidence of synergy between AR and the prolactin signaling protein Stat5a/b in human prostate cancer cells.
Journal of Virology | 2000
Walter Stünkel; Zhonghui Huang; Shyh-Han Tan; Mark J. O'Connor; Hans-Ulrich Bernard
ABSTRACT Two nuclear matrix attachment regions (MARs) bracket a 550-bp segment of the long control region (LCR) containing the epithelial cell-specific enhancer and the E6 promoter of human papillomavirus type 16 (HPV-16). One of these MARs is located in the 5′ third of the LCR (5′-LCR-MAR); the other lies within the E6 gene (E6-MAR). To study their function, we linked these MARs in various natural or artificial permutations to a chimeric gene consisting of the HPV-16 enhancer-promoter segment and a reporter gene. In transient transfections of HeLa cells, the presence of either of these two MARs strongly represses reporter gene expression. In contrast to this, but similar to the published behavior of cellular MARs, reporter gene expression is stimulated strongly by the E6-MAR and moderately by the 5′-LCR-MAR in stable transfectants of HeLa or C33A cells. To search for binding sites of soluble nuclear proteins which may be responsible for repression during transient transfections, we performed electrophoretic mobility shift assays (EMSAs) of overlapping oligonucleotides that represented all sequences of these two MARs. Both MARs contain multiple sites for two strongly binding proteins and weak binding sites for additional factors. The strongest complex, with at least five binding sites in each MAR, is generated by the CCAAT displacement factor (CDP)/Cut, as judged by biochemical purification, by EMSAs with competing oligonucleotides and with anti-CDP/Cut oligonucleotides, and by mutations. CDP/Cut, a repressor that is down-regulated during differentiation, apparently represses HPV-16 transcription in undifferentiated epithelials cells and in HeLa cells, which are rich in CDP/Cut. In analogy to poorly understood mechanisms acting on cellular MARs, activation after physical linkage to chromosomal DNA may result from competition between the nuclear matrix and CDP/Cut. Our observations show that cis-responsive elements that regulate the HPV-16 E6 promoter are tightly clustered over at least 1.3 kb and occur throughout the E6 gene. HPV-16 MARs are context dependent transcriptional enhancers, and activated expression of HPV-16 oncogenes dependent on chromosomal integration may positively select tumorigenic cells during the multistep etiology of cervical cancer.
The FASEB Journal | 2001
Yoshiaki Azuma; Shyh-Han Tan; Margaret M. Cavenagh; Alexandra M. Ainsztein; Hisato Saitoh; Mary Dasso
SUMO‐1 is a small ubiquitin‐related protein. SUMO‐1 conjugation requires enzymes with sequence and biochemical similarity to ubiquitin E1 and E2 enzymes. We have examined the expression, localization, and biochemical behavior of Aos1 and Uba2, subunits of the mammalian SUMO‐1 E1 enzyme. Both of these proteins are expressed in multiple tissues and localized to the nucleus. Aos1 protein levels vary through the cell cycle. These changes in Aos1 concentration may play a role in the regulation of the SUMO‐1 pathway, because they correlate with changes in the abundance of some SUMO‐1‐conjugated species. Biochemical analysis reveals that Aos1 and Uba2 associate with each other in a simple heterodimeric complex without other subunits, unlike the budding yeast Uba2 homologue, which apparently associates with several different proteins. Although it is possible to reconstitute SUMO‐1 conjugation with purified Uba2, Aos1, and Ubc9, this reaction is significantly less efficient than conjugation observed in cellular extracts, suggesting the possibility that there may be activators of SUMO‐1 conjugation in vivo that have not yet been characterized. Taken together, these observations reveal that the SUMO‐1 pathway is controlled on multiple levels during the cell cycle.
Cancer Biology & Therapy | 2011
Ahmed Mohamed; Shyh-Han Tan; Chen Sun; Syed Shaheduzzaman; Ying Hu; Gyorgy Petrovics; Yongmei Chen; Isabell A. Sesterhenn; Hua Li; Taduru Sreenath; David G. McLeod; Albert Dobi; Shiv Srivastava
Androgen dependent induction of the ETS related gene (ERG) expression in more than half of all prostate cancers results from gene fusions involving regulatory sequence of androgen regulated genes (i.e. TMPRSS2, SLC45A3 and NDRG1) and protein coding sequence of the ERG. Emerging studies in experimental models underscore the functions of ERG in prostate tumorigenesis. However, biological and biochemical functions of ERG in prostate cancer (CaP) remain to be elucidated. This study suggests that ERG activation plays a role in prostaglandin signaling because knockdown of ERG expression in TMPRSS2-ERG fusion containing CaP cells leads to altered levels of the 15-hydroxy-prostaglandin dehydrogenase (HPGD), a tumor suppressor and prostaglandin catabolizing enzyme, and prostaglandin E2 (PGE2) . We demonstrate that HPGD expression is regulated by the binding of the ERG protein to the core promoter of this gene. Moreover, prostaglandin E2 dependent cell growth and urokinase-type plasminogen activator (uPA) expression are also affected by ERG knockdown. Together, these data imply that the ERG oncoprotein in CaP cells positively influence prostaglandin mediated signaling, which may contribute to tumor progression. See commentary: Gene fusions find an ERG-way to tumor inflammation
Clinical Cancer Research | 2008
Ayush Dagvadorj; Shyh-Han Tan; Zhiyong Liao; Luciane R. Cavalli; Bassem R. Haddad; Marja T. Nevalainen
Purpose: One of the major obstacles in understanding the molecular mechanisms underlying the transition of prostate cancer growth from androgen dependency to a hormone-refractory state is the lack of androgen-regulated and tumorigenic human prostate cancer cell lines. Experimental Design: We have established and characterized a new human prostate cancer cell line, CWR22Pc, derived from the primary CWR22 human prostate xenograft tumors. Results: The growth of CWR22Pc cells is induced markedly by dihydrotestosterone, and CWR22Pc cells express high levels of androgen receptor (AR) and prostate-specific antigen (PSA). Importantly, PSA expression in CWR22Pc cells is regulated by androgens. Stat5a/b, Stat3, Akt, and mitogen-activated protein kinase were constitutively active or cytokine inducible in CWR22Pc cells. The AR in CWR22Pc cells contains the H874Y mutation, but not the exon 3 duplication or other mutations. When inoculated subcutaneously into dihydrotestosterone-supplemented castrated nude mice, large tumors formed rapidly in 20 of 20 mice, whereas no tumors developed in mice without circulating dihydrotestosterone. Moreover, the serum PSA levels correlated with the tumor volumes. When androgens were withdrawn from the CWR22Pc tumors grown in nude mice, the tumors initially shrank but regrew back as androgen-independent tumors. Conclusions: This androgen-regulated and tumorigenic human prostate cancer cell line provides a valuable tool for studies on androgen regulation of prostate cancer cells and on the molecular mechanisms taking place in growth promotion of prostate cancer when androgens are withdrawn from the growth environment. CWR22Pc cells also provide a model system for studies on the regulation of transcriptional activity of mutated H874YAR in a prostate cancer cell context.