Shylaja Hegde
University of Alabama at Birmingham
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Shylaja Hegde.
Life Sciences | 2017
Shylaja Hegde; Om P. Srivastava
&NA; Persistent fetal vasculature (PFV) occurs as a result of a failure of fetal vasculature to undergo normal programmed involution. During development, before the formation of retinal vessels, the lens and the inner retina are nourished by the hyaloid vasculature. Hyaloid vessels extend from the optic nerve and run through the vitreous to encapsulate the lens. As fetal retinal vessels develop, hyaloid vasculature naturally regresses. Failure of regression of the hyaloid artery has been shown to lead to severe congenital pathologies. Studies on childhood blindness and visual impairment in the United States have shown that PFV accounts for 4.8% of total blindness. Although PFV is a serious developmental disease affecting the normal visual development pathway, the exact regulatory mechanism responsible for the regression of the hyaloid artery is still unknown. In this review, we have summarized the cellular defects associated with different knockout models that manifest features of persistent fetal vasculature. Based on similar cellular defects observed in different knockouts (KO)s such as altered migration, increased proliferation and decreased apoptosis and, the known role of integrins in the regulation of these cellular behaviors, we propose here that integrins may play a significant role in the pathophysiology of persistent fetal vasculature disease. Graphical abstract Figure. No caption available.
PLOS ONE | 2016
Shylaja Hegde; Robert A. Kesterson; Om P. Srivastava
βA3/A1-crystallin is an abundant structural protein of the lens that is very critical for lens function. Many different genetic mutations have been shown to associate with different types of cataracts in humans and in animal models. βA3/A1-crystallin has four Greek key-motifs that organize into two crystallin domains. It shown to bind calcium with moderate affinity and has putative calcium-binding site. Other than in the lens, βA3/A1 is also expressed in retinal astrocytes, retinal pigment epithelial (RPE) cells, and retinal ganglion cells. The function of βA3/A1-crystallin in the retinal cell types is well studied; however, a clear understanding of the function of this protein in the lens has not yet been established. In the current study, we generated the βA3/A1-crystallin knockout (KO) mouse and explored the function of βA3/A1-crystallin in lens development. Our results showed that βA3-KO mice develop congenital nuclear cataract and exhibit persistent fetal vasculature condition. At the cellular level KO lenses show defective lysosomal clearance and accumulation of nuclei, mitochondria, and autophagic cargo in the outer cortical region of the lens. In addition, the calcium level and the expression and activity of calpain-3 were increased in KO lenses. Taken together, these results suggest the lack of βA3-crystallin function in lenses, alters calcium homeostasis which in turn causes lysosomal defects and calpain activation. These defects are responsible for the development of nuclear cataract in KO lenses.
PLOS ONE | 2016
Sarah M Baldivia; Alexander Levy; Shylaja Hegde; Sja Stijn Aper; Maarten Merkx; Rafael Grytz
Increasing evidence suggests that unknown collagen remodeling mechanisms in the sclera underlie myopia development. We are proposing a novel organ culture system in combination with two-photon fluorescence imaging to quantify collagen remodeling at the tissue- and lamella-level. Tree shrew scleral shells were cultured up to 7 days in serum-free media and cellular viability was investigated under: (i) minimal tissue manipulations; (ii) removal of intraocular tissues; gluing the eye to a washer using (iii) 50 μL and (iv) 200 μL of cyanoacrylate adhesive; (v) supplementing media with Hams F-12 Nutrient Mixture; and (vi) culturing eyes subjected to 15 mmHg intraocular pressure in our new bioreactor. Two scleral shells of normal juvenile tree shrews were fluorescently labeled using a collagen specific protein and cultured in our bioreactor. Using two-photon microscopy, grid patterns were photobleached into and across multiple scleral lamellae. These patterns were imaged daily for 3 days, and tissue-/lamella-level strains were calculated from the deformed patterns. No significant reduction in cell viability was observed under conditions (i) and (v). Compared to condition (i), cell viability was significantly reduced starting at day 0 (condition (ii)) and day 3 (conditions (iii, iv, vi)). Tissue-level strain and intralamellar shear angel increased significantly during the culture period. Some scleral lamellae elongated while others shortened. Findings suggest that tree shrew sclera can be cultured in serum-free media for 7 days with no significant reduction in cell viability. Scleral fibroblasts are sensitive to tissue manipulations and tissue gluing. However, Hams F-12 Nutrient Mixture has a protective effect on cell viability and can offset the cytotoxic effect of cyanoacrylate adhesive. This is the first study to quantify collagen micro-deformations over a prolonged period in organ culture providing a new methodology to study scleral remodeling in myopia.
PLOS ONE | 2015
Ekta Tiwary; Shylaja Hegde; Sangeetha Purushotham; Champion Deivanayagam; Om P. Srivastava
Interaction among crystallins is required for the maintenance of lens transparency. Deamidation is one of the most common post-translational modifications in crystallins, which results in incorrect interaction and leads to aggregate formation. Various studies have established interaction among the α- and β-crystallins. Here, we investigated the effects of the deamidation of αA- and αB-crystallins on their interaction with βA3-crystallin using surface plasmon resonance (SPR) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET) methods. SPR analysis confirmed adherence of WT αA- and WT αB-crystallins and their deamidated mutants with βA3-crystallin. The deamidated mutants of αA–crystallin (αA N101D and αA N123D) displayed lower adherence propensity for βA3-crystallin relative to the binding affinity shown by WT αA-crystallin. Among αB-crystallin mutants, αB N78D displayed higher adherence propensity whereas αB N146D mutant showed slightly lower binding affinity for βA3-crystallin relative to that shown by WT αB-crystallin. Under the in vivo condition (FLIM-FRET), both αA-deamidated mutants (αA N101D and αA N123D) exhibited strong interaction with βA3-crystallin (32±4% and 36±4% FRET efficiencies, respectively) compared to WT αA-crystallin (18±4%). Similarly, the αB N78D and αB N146D mutants showed strong interaction (36±4% and 22±4% FRET efficiencies, respectively) with βA3-crystallin compared to 18±4% FRET efficiency of WT αB-crystallin. Further, FLIM-FRET analysis of the C-terminal domain (CTE), N-terminal domain (NTD), and core domain (CD) of αA- and αB-crystallins with βA3-crystallin suggested that interaction sites most likely reside in the αA CTE and αB NTD regions, respectively, as these domains showed the highest FRET efficiencies. Overall, results suggest that similar to WT αA- and WTαB-crystallins, the deamidated mutants showed strong interactionfor βA3-crystallin. Variable in vitro and in vivo interactions are most likely due to the mutant’s large size oligomers, reduced hydrophobicity, and altered structures. Together, the results suggest that deamidation of α-crystallin may facilitate greater interaction and the formation of large oligomers with other crystallins, and this may contribute to the cataractogenic mechanism.
Investigative Ophthalmology & Visual Science | 2016
Shylaja Hegde; Om P. Srivastava
Investigative Ophthalmology & Visual Science | 2014
Om P. Srivastava; K. Srivastava; Shylaja Hegde; Roy Joseph
Investigative Ophthalmology & Visual Science | 2014
Shylaja Hegde; K. Srivastava; Om P. Srivastava
Investigative Ophthalmology & Visual Science | 2014
Ekta Tiwary; Shylaja Hegde; Om P. Srivastava
Investigative Ophthalmology & Visual Science | 2013
K. Srivastava; Roy Joseph; Shylaja Hegde; Om P. Srivastava
Investigative Ophthalmology & Visual Science | 2013
Shylaja Hegde; K. Srivastava; Roy Joseph; Om P. Srivastava