Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Si-Jun Zheng is active.

Publication


Featured researches published by Si-Jun Zheng.


Trends in Plant Science | 2010

Helping plants to deal with insects: the role of beneficial soil-borne microbes

Ana Pineda; Si-Jun Zheng; Joop J. A. van Loon; Corné M. J. Pieterse; Marcel Dicke

Several soil-borne microbes such as mycorrhizal fungi and plant growth-promoting rhizobacteria can help plants to deal with biotic and abiotic stresses via plant growth promotion and induced resistance. Such beneficial belowground microbes interact in a bidirectional way via the plant with aboveground insects such as herbivores, their natural enemies and pollinators. The role of these interactions in natural and agricultural ecosystems is receiving increased attention, and the molecular and physiological mechanisms involved in these interactions should be the focus of more attention. Here, we review the recent discoveries on plant-mediated interactions between beneficial belowground microbes and aboveground insects.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Whiteflies interfere with indirect plant defense against spider mites in Lima bean.

Peng-Jun Zhang; Si-Jun Zheng; Van Loon; Wilhelm Boland; Anja David; Roland Mumm; Marcel Dicke

Plants under herbivore attack are able to initiate indirect defense by synthesizing and releasing complex blends of volatiles that attract natural enemies of the herbivore. However, little is known about how plants respond to infestation by multiple herbivores, particularly if these belong to different feeding guilds. Here, we report the interference by a phloem-feeding insect, the whitefly Bemisia tabaci, with indirect plant defenses induced by spider mites (Tetranychus urticae) in Lima bean (Phaseolus lunatus) plants. Additional whitefly infestation of spider-mite infested plants resulted in a reduced attraction of predatory mites (Phytoseiulus persimilis) compared to attraction to plants infested by spider mites only. This interference is shown to result from the reduction in (E)-β-ocimene emission from plants infested by both spider mites and whiteflies. When using exogenous salicylic acid (SA) application to mimic B. tabaci infestation, we observed similar results in behavioral and chemical analyses. Phytohormone and gene-expression analyses revealed that B. tabaci infestation, as well as SA application, inhibited spider mite-induced jasmonic acid (JA) production and reduced the expression of two JA-regulated genes, one of which encodes for the P. lunatus enzyme β-ocimene synthase that catalyzes the synthesis of (E)-β-ocimene. Remarkably, B. tabaci infestation concurrently inhibited SA production induced by spider mites. We therefore conclude that in dual-infested Lima bean plants the suppression of the JA signaling pathway by whitefly feeding is not due to enhanced SA levels.


Plant Physiology | 2008

Ecological Genomics of Plant-Insect Interactions: From Gene to Community

Si-Jun Zheng; Marcel Dicke

A major challenge for current biology is to integrate research approaches that address different levels of biological organization, from subcellular mechanisms to functions in ecological communities. The study of plant-insect interactions provides interesting options for this. Ample information at


New Phytologist | 2013

Jasmonate and ethylene signaling mediate whitefly‐induced interference with indirect plant defense in Arabidopsis thaliana

Peng-Jun Zhang; Colette Broekgaarden; Si-Jun Zheng; Tjeerd A. L. Snoeren; Joop J. A. van Loon; Rieta Gols; Marcel Dicke

Upon herbivore attack, plants activate an indirect defense, that is, the release of a complex mixture of volatiles that attract natural enemies of the herbivore. When plants are simultaneously exposed to two herbivore species belonging to different feeding guilds, one herbivore may interfere with the indirect plant defense induced by the other herbivore. However, little is understood about the mechanisms underlying such interference. Here, we address the effect of herbivory by the phloem-feeding whitefly Bemisia tabaci on the induced indirect defense of Arabidopsis thaliana plants to Plutella xylostella caterpillars, that is, the attraction of the parasitoid wasp Diadegma semiclausum. Assays with various Arabidopsis mutants reveal that B. tabaci infestation interferes with indirect plant defense induced by P. xylostella, and that intact jasmonic acid and ethylene signaling are required for such interference caused by B. tabaci. Chemical analysis of plant volatiles showed that the composition of the blend emitted in response to the caterpillars was significantly altered by co-infestation with whiteflies. Moreover, whitefly infestation also had a considerable effect on the transcriptomic response of the plant to the caterpillars. Understanding the mechanisms underlying a plants responses to multiple attackers will be important for the development of crop protection strategies in a multi-attacker context.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores

Erik H. Poelman; Si-Jun Zheng; Zhao Zhang; Nanda M. Heemskerk; Anne Marie Cortesero; Marcel Dicke

Plants are exposed to a suite of herbivorous attackers that often arrive sequentially. Herbivory affects interactions between the host plants and subsequently attacking herbivores. Moreover, plants may respond to herbivory by emitting volatile organic compounds (VOCs) that attract carnivorous natural enemies of the herbivores. However, information borne by VOCs is ubiquitous and may attract carnivores, such as parasitoids, that differ in their effectiveness at releasing the plant from its herbivorous attackers. Furthermore, the development of parasitoids within their herbivorous hosts, attacking a given host plant, may influence the elicitation of defensive reactions in the host plant. This may, in turn, affect the behavior of subsequent herbivores attacking the host plant. Here, we show that the species identity of a parasitoid had a more significant effect on defense responses of Brassica oleracea plants than the species identity of the herbivorous hosts of the parasitoids. Consequently, B. oleracea plants that were damaged by caterpillars (Pieris spp.) parasitized by different parasitoid species varied in the degree to which diamondback moths (Plutella xylostella) selected the plants for oviposition. Attracting parasitoids in general benefitted the plants by reducing diamondback moth colonization. However, the species of parasitoid that parasitized the herbivore significantly affected the magnitude of this benefit by its species-specific effect on herbivore–plant interactions mediated by caterpillar regurgitant. Our findings show that information-mediated indirect defense may lead to unpredictable consequences for plants when considering trait-mediated effects of parasitized caterpillars on the host plant and their consequences because of community-wide responses to induced plants.


Molecular Plant-microbe Interactions | 2007

Sensitivity and speed of induced defense of cabbage (Brassica oleracea L.) : Dynamics of BoLoX expression patterns during insect and pathogen attack

Si-Jun Zheng; Jeroen P. van Dijk; Maaike Bruinsma; Marcel Dicke

The lipoxygenase pathway is involved in the early steps of plant responses to herbivorous insects and phytopathogens. Induced defenses in the crucifer Brassica oleracea have been well documented. Here, we have cloned a LIPOXYGENASE (LOX) from B. oleracea (BoLOX). The sequence reveals that the BoLOX protein has a transit peptide for chloroplast targeting, which is characteristic for class 2 LOXs involved in jasmonic acid (JA) biosynthesis which takes place in the chloroplast. Phylogenetic analysis shows that BoLOX is closely related to B. napus BnLOX2fl and Arabidopsis thaliana AtLOX2, which mediates JA biosynthesis. BoLOX also shares functional characteristics with AtLOX2; BoLOX is inducible by wounding, JA treatment, and herbivores such as caterpillars (Pieris rapae, P. brassicae, and Mamestra brassicae), spider mites (Tetranychus urticae), locusts (Schistocerca gregaria), and a bacterial pathogen (Pseudomonas syringae pv. tomato). Of these, Pieris spp. caterpillars also induce AtLOX2 and JA biosynthesis in Arabidopsis. However, the aphid Myzus persicae did not induce BoLOX, which agrees with previous reports that this aphid induces neither AtLOX2 nor JA biosynthesis in Arabidopsis. Quantitative expression analysis of temporal, spatial, and density-dependent BoLOX transcript levels through real-time quantitative polymerase chain reaction demonstrated that BoLOX is maximally expressed after feeding by only two first-instar caterpillars for 24 h. Systemic expression was approximately 10-fold lower than local expression for herbivore-induced responses. The good correlation of BoLOX transcript levels with reports in the literature on induced defenses of B. oleracea is discussed.


Plant Biology | 2012

Rhizobacteria modify plant-aphid interactions: a case of induced systemic susceptibility.

Ana Pineda; Si-Jun Zheng; J.J.A. van Loon; Marcel Dicke

Beneficial microbes, such as plant growth-promoting rhizobacteria and mycorrhizal fungi, may have a plant-mediated effect on insects aboveground. The plant growth-promoting rhizobacterium Pseudomonas fluorescens can induce systemic resistance in Arabidopsis thaliana against several microbial pathogens and chewing insects. However, the plant-mediated effect of these beneficial microbes on phloem-feeding insects is not well understood. Using Arabidopsis as a model, we here report that P. fluorescens has a positive effect on the performance (weight gain and intrinsic rate of increase) of the generalist aphid Myzus persicae, while no effect was recorded on the crucifer specialist aphid Brevicoryne brassicae. Additionally, transcriptional analyses of selected marker genes revealed that in the plant-microbe interaction with M. persicae, rhizobacteria (i) prime the plant for enhanced expression of LOX2, a gene involved in the jasmonic acid (JA)-regulated defence pathway, and (ii) suppress the expression of ABA1, a gene involved in the abscisic acid (ABA) signalling pathway, at several time points. In contrast, almost no effect of the plant-microbe interaction with B. brassicae was found at the transcriptional level. This study presents the first data on rhizobacteria-induced systemic susceptibility to an herbivorous insect, supporting the pattern proposed for other belowground beneficial microbes and aboveground phloem feeders. Moreover, we provide further evidence that at the transcript level, soil-borne microbes modify plant-aphid interactions.


Plant Biology | 2011

Herbivore-induced volatiles of cabbage (Brassica oleracea) prime defence responses in neighbouring intact plants

J. Peng; J.J.A. van Loon; Si-Jun Zheng; Marcel Dicke

When attacked by herbivores, plants release herbivore-induced plant volatiles (HIPV) that may function in direct defence by repelling herbivores or reducing their growth. Emission of HIPV may also contribute to indirect defence by attracting natural enemies of the herbivore. Here, cabbage (Brassica oleracea L.) plants (receiver plants) previously exposed to HIPV and subsequently induced through feeding by five Pieris brassicae L. caterpillars attracted more Cotesia glomerata L. parasitoids than control plants. HIPVs to which receiver plants had been exposed were emitted by B. oleracea infested with 50 P. brassicae caterpillars. Control plants had been exposed to volatiles from undamaged plants. In contrast, there were no differences in the attraction of wasps to receiver plants induced through feeding of one or ten larvae of P. brassicae compared to control plants. In addition, RT-PCR demonstrated higher levels of LIPOXYGENASE (BoLOX) transcripts in HIPV-exposed receiver plants. Exposure to HIPV from emitter plants significantly inhibited the growth rate of both P. brassicae and Mamestra brassicae caterpillars compared to growth rates of caterpillars feeding on control receiver plants. Our results demonstrate plant-plant signalling leading to priming of both indirect and direct defence in HIPV-exposed B. oleracea plants.


New Phytologist | 2010

Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly Pieris rapae

Si-Jun Zheng; Tjeerd A. L. Snoeren; Sander W. Hogewoning; Joop J. A. van Loon; Marcel Dicke

Optical plant characteristics are important cues to plant-feeding insects. In this article, we demonstrate for the first time that silencing the phytoene desaturase (PDS) gene, encoding a key enzyme in plant carotenoid biosynthesis, affects insect oviposition site selection behaviour. Virus-induced gene silencing employing tobacco rattle virus was used to knock down endogenous PDS expression in three plant species (Arabidopsis thaliana, Brassica nigra and Nicotiana benthamiana) by its heterologous gene sequence from Brassica oleracea. We investigated the consequences of the silencing of PDS on oviposition behaviour by Pieris rapae butterflies on Arabidopsis and Brassica plants; first landing of the butterflies on Arabidopsis plants (to eliminate an effect of contact cues); first landing on Arabidopsis plants enclosed in containers (to eliminate an effect of volatiles); and caterpillar growth on Arabidopsis plants. Our results show unambiguously that P. rapae has an innate ability to visually discriminate between green and variegated green-whitish plants. Caterpillar growth was significantly lower on PDS-silenced than on empty vector control plants. This study presents the first analysis of PDS function in the interaction with an herbivorous insect. We conclude that virus-induced gene silencing is a powerful tool for investigating insect-plant interactions in model and nonmodel plants.


Journal of Chemical Ecology | 2011

Silencing Defense Pathways in Arabidopsis by Heterologous Gene Sequences from Brassica oleracea Enhances the Performance of a Specialist and a Generalist Herbivorous Insect

Si-Jun Zheng; Peng-Jun Zhang; Joop J. A. van Loon; Marcel Dicke

The jasmonic acid (JA) signaling pathway and defensive secondary metabolites such as glucosinolates are generally considered to play central roles in the defense of brassicaceous plants against herbivorous insects. To determine the function of specific plant genes in plant-insect interactions, signaling or biosynthetic mutants are needed. However, mutants are not yet available for brassicaceous plants other than Arabidopsis thaliana, e.g., cabbage (Brassica oleracea). We employed virus-induced gene silencing (VIGS) by using tobacco rattle virus (TRV) to knock down the endogenous expression of lipoxygenase (LOX), an upstream enzyme of the JA pathway and thioglucoside glucohydrolase: myrosinase (TGG1/TGG2), a hydrolytic enzyme that catalyzes the release of defensive volatile products originating from glucosinolates, in Arabidopsis thaliana. This was done by using the heterologous gene sequences from B. oleracea. Silencing these genes in A. thaliana plants is efficient and specific. Only 18 nucleotides with 100% identity between the trigger (BoMYR) and the target (AtTGG1/2) sequence are sufficient to achieve gene silencing. LOX-silenced plants showed significantly reduced AtLOX2 transcript accumulation after Pieris rapae larval feeding. TGG-silenced plants exhibited significantly lower TGG1/TGG2 transcript levels only after shorter larval feeding. The inhibition of TGG1/TGG2 transcript accumulation via gene silencing may be overruled by longer larval feeding. Specialist P. rapae larvae developed significantly better on both types of silenced plants than on empty vector (EV) control plants, while generalist Mamestra brassicae larvae developed significantly better on the TGG1/TGG2 silenced plants than on EV control plants. This shows that not only the generalist herbivore but also the Brassicaceae-specialist P. rapae is negatively affected by the ability of brassicaceous plants to produce their specific secondary metabolites, i.e., glucosinolates. Our results demonstrate the important roles of AtLOX2 and AtTGG1/TGG2 genes, which were silenced by heterologous gene sequences from B. oleracea BoLOX and BoMYR, in A. thaliana resistance to the specialist P. rapae and the generalist M. brassicae.

Collaboration


Dive into the Si-Jun Zheng's collaboration.

Top Co-Authors

Avatar

Marcel Dicke

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Joop J. A. van Loon

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

J.J.A. van Loon

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Peng-Jun Zhang

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Tjeerd A. L. Snoeren

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ana Pineda

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Colette Broekgaarden

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Maaike Bruinsma

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Rieta Gols

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge