Si-Qing Liu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Si-Qing Liu.
Virologica Sinica | 2016
Cheng-Lin Deng; Si-Qing Liu; Qiu-Yan Zhang; Mingyue Xu; Honglei Zhang; Dayong Gu; Lei Shi; Jian’an He; Gengfu Xiao; Bo Zhang
Here, we describe a cell culture-based procedure for isolating the infectious ZIKV (GenBank KU963796) from a human serum sample (ca. 50 μL) with an extremely low viral load (Ct value = 32).
PLOS ONE | 2016
Hongju Wang; Si-Qing Liu; Bo Zhang; Wenqiang Wei
Zika virus (ZIKV) is a mosquito-borne virus (arbovirus) in the family Flaviviridae, and the symptoms caused by ZIKV infection in humans include rash, fever, arthralgia, myalgia, asthenia and conjunctivitis. Codon usage bias analysis can reveal much about the molecular evolution and host adaption of ZIKV. To gain insight into the evolutionary characteristics of ZIKV, we performed a comprehensive analysis on the codon usage pattern in 46 ZIKV strains by calculating the effective number of codons (ENc), codon adaptation index (CAI), relative synonymous codon usage (RSCU), and other indicators. The results indicate that the codon usage bias of ZIKV is relatively low. Several lines of evidence support the hypothesis that translational selection plays a role in shaping the codon usage pattern of ZIKV. The results from a correspondence analysis (CA) indicate that other factors, such as base composition, aromaticity, and hydrophobicity may also be involved in shaping the codon usage pattern of ZIKV. Additionally, the results from a comparative analysis of RSCU between ZIKV and its hosts suggest that ZIKV tends to evolve codon usage patterns that are comparable to those of its hosts. Moreover, selection pressure from Homo sapiens on the ZIKV RSCU patterns was found to be dominant compared with that from Aedes aegypti and Aedes albopictus. Taken together, both natural translational selection and mutation pressure are important for shaping the codon usage pattern of ZIKV. Our findings contribute to understanding the evolution of ZIKV and its adaption to its hosts.
Journal of Virological Methods | 2016
Mingyue Xu; Si-Qing Liu; Cheng-Lin Deng; Qiu-Yan Zhang; Bo Zhang
The ongoing Zika virus (ZIKV) outbreak has rapidly spread to new areas of Americas, which were the first transmissions outside its traditional endemic areas in Africa and Asia. Due to the link with newborn defects and neurological disorder, numerous infected cases throughout the world and various mosquito vectors, the virus has been considered to be an international public health emergency. In the present study, we developed a SYBR Green based one-step real-time RT-PCR assay for rapid detection of ZIKV. Our results revealed that the real-time assay is highly specific and sensitive in detection of ZIKV in cell samples. Importantly, the replication of ZIKV at different time points in infected cells could be rapidly monitored by the real-time RT-PCR assay. Specifically, the real-time RT-PCR showed acceptable performance in measurement of infectious ZIKV RNA. This assay could detect ZIKV at a titer as low as 1PFU/mL. The real-time RT-PCR assay could be a useful tool for further virology surveillance and diagnosis of ZIKV.
Infection, Genetics and Evolution | 2015
Si-Qing Liu; Cheng-Lin Deng; Zhiming Yuan; Simon Rayner; Bo Zhang
The current Ebola virus disease (EVD) epidemic has killed more than all previous Ebola outbreaks combined and, even as efforts appear to be bringing the outbreak under control, the threat of reemergence remains. The availability of new whole-genome sequences from West Africa in 2014 outbreak, together with those from the earlier outbreaks, provide an opportunity to investigate the genetic characteristics, the epidemiological dynamics and the evolutionary history for Zaire ebolavirus (ZEBOV). To investigate the evolutionary properties of ZEBOV in this outbreak, we examined amino acid mutations, positive selection, and evolutionary rates on the basis of 123 ZEBOV genome sequences. The estimated phylogenetic relationships within ZEBOV revealed that viral sequences from the same period or location formed a distinct cluster. The West Africa viruses probably derived from Middle Africa, consistent with results from previous studies. Analysis of the seven protein regions of ZEBOV revealed evidence of positive selection acting on the GP and L genes. Interestingly, all putatively positive-selected sites identified in the GP are located within the mucin-like domain of the solved structure of the protein, suggesting a possible role in the immune evasion properties of ZEBOV. Compared with earlier outbreaks, the evolutionary rate of GP gene was estimated to significantly accelerate in the 2014 outbreak, suggesting that more ZEBOV variants are generated for human to human transmission during this sweeping epidemic. However, a more balanced sample set and next generation sequencing datasets would help achieve a clearer understanding at the genetic level of how the virus is evolving and adapting to new conditions.
Journal of Medical Virology | 2018
Si-Qing Liu; Xiao Li; Cheng-Lin Deng; Zhiming Yuan; Bo Zhang
Zika virus (ZIKV) and chikungunya virus (CHIKV) are important human pathogens and mosquito‐borne arboviruses, which have resembling history, common vectors, circulating regions, and indistinguishable clinical symptoms. Wide geographical range that is suitable for ZIKV and CHIKV transmission underlines the concern about the impact of epidemic and endemic infections on burden of public health. In the present study, a highly sensitive and specific one‐step multiplex real‐time RT‐PCR assay was developed and evaluated for simultaneous detection and quantification of ZIKV and CHIKV. The single reaction assay employs two pairs of primers and two TaqMan probes that differentiate ZIKV and CHIKV infections. The entire viral genomic RNA in vitro transcribed from full‐length infectious clones were used to generate the standard curves for absolute quantification in subsequent tests. The detection limit of the one‐step multiplex assay was 1 and 0.5 PFU for infectious ZIKV and CHIKV, respectively. The assessment of specificity indicated this assay is highly specific to targeted viruses showing no amplification of a variety of other flaviviruses. Our assay was able to detect geographically separated and phylogenetically diverse strains of ZIKV and CHIKV. On the applicability of monitoring viral multiplication in cells and testing clinical samples, the one‐step multiplex assay provided efficient and accurate determination. The one‐step multiplex real‐time RT‐PCR assay offers a valuable tool for detection of ZIKV and CHIKV and potentially contributes to general surveillance and clinical treatment.
Viruses | 2016
Cheng-Lin Deng; Si-Qing Liu; Dong-Gen Zhou; Linlin Xu; Xiao-Dan Li; Pan-Tao Zhang; Peng-Hui Li; Han-Qing Ye; Hongping Wei; Zhiming Yuan; Cheng-Feng Qin; Bo Zhang
Chikungunya virus (CHIKV), a member of the Alphavirus genus, is an important human emerging/re-emerging pathogen. Currently, there are no effective antiviral drugs or vaccines against CHIKV infection. Herein, we construct an infectious clone of CHIKV and an eGFP reporter CHIKV (eGFP-CHIKV) with an isolated strain (assigned to Asian lineage) from CHIKV-infected patients. The eGFP-CHIKV reporter virus allows for direct visualization of viral replication through the levels of eGFP expression. Using a known CHIKV inhibitor, ribavirin, we confirmed that the eGFP-CHIKV reporter virus could be used to identify inhibitors against CHIKV. Importantly, we developed a novel and reliable eGFP-CHIKV reporter virus-based neutralization assay that could be used for rapid screening neutralizing antibodies against CHIKV.
Virologica Sinica | 2015
Cheng-Lin Deng; Xiao-Dan Li; Si-Qing Liu; Linlin Xu; Han-Qing Ye; Cheng-Feng Qin; Bo Zhang
Coxsackievirus A16 (CA16) is one of the major causes of hand, foot, and mouth disease (HFMD) worldwide, which is a common illness that affects children. The frequent occurrence of HFMD outbreaks has become a serious public health problem in Asia. Therefore, it is important to understand the pathogenesis and replication of CA16. In this study, a stable infectious cDNA clone of an epidemic strain of Coxsackievirus A16 (CA16) was assembled, and subsequently a reporter virus (eGFP-CA16) was constructed by inserting the eGFP gene between the 5′-UTR and the N-terminus of VP4, with the addition of a 2A protease cleavage site (ITTLG) at its C-terminus. This was transfected into Vero cells to generate infectious recombinant viruses. The growth characteristics and plaque morphology, in vitro, in mammalian cells were found to be indistinguishable between the parental and recombinant viruses. Although the eGFP-CA16 showed smaller plaque size as compared to recombinant CA16, both were found to exhibit similar growth trends and EC50 of NITD008. In summary, this stable infectious cDNA clone should provide a valuable experimental system to study CA16 infection and host response. The eGFP-CA16 is expected to provide a powerful tool to monitor eGFP expression in infected cells and to evaluate the antiviral activity of potential antiviral agents in the treatment of CA16 infections.
Virologica Sinica | 2017
Si-Qing Liu; Xiao Li; Ya-Nan Zhang; Ai-Li Gao; Cheng-Lin Deng; Jun-Hua Li; Shoukat Jehan; Nadia Jamil; Fei Deng; Hongping Wei; Bo Zhang
The chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus, which has infected millions of people in Africa, Asia, Americas, and Europe since it reemerged in India and Indian Ocean regions in 2005–2006. Starting in the middle of November 2016, CHIKV has been widely spread, and more than 4,000 cases of infections in humans were confirmed in Pakistan. Here, we report the first isolation and characterization of CHIKV from the Pakistan outbreak. Eight CHIKV strains were newly isolated from human serum samples using a cell culture procedure. A full-length genome sequence and eight complete envelope (E1) sequences of CHIKV from Pakistan were obtained in this study. Alignment of the CHIKV E1 sequences revealed that the eight new CHIKV isolates were highly homogeneous, with only two nonsynonymous substitutions found at generally conserved sites (E99 and Q235). Based on the comparison of 342 E1 sequences, the two nonsynonymous mutations were located in well-recognized domains associated with viral functions such as the cell fusion and vector specificity, suggesting their potential functional importance. Phylogenetic analysis indicated that the CHIKV strains from Pakistan originated from CHIKV circulating in the Indian region. This study helps elucidate the epidemics of CHIKV in Pakistan and also provides a foundation for studies of evolution and expansion of CHIKV in South Asia.
Journal of General Virology | 2017
Cheng-Lin Deng; Qiu-Yan Zhang; Dong-Dong Chen; Si-Qing Liu; Cheng-Feng Qin; Bo Zhang; Han-Qing Ye
In this study, an in vitro ligation method was developed to assemble a full-length infectious cDNA clone of the Zika virus (ZIKV). Four contiguous cDNA subclones covering the complete ZIKV genome were constructed with unique BglI restriction sites at the ends of each fragment. The BglI restriction sites only allow in vitro ligation to happen between interconnecting restriction sites from adjacent cDNA fragments, resulting in an intact full-length cDNA of ZIKV. RNA transcripts derived from the full-length cDNA were infectious. The recombinant virus replicated as efficiently as the wild-type virus with similar growth kinetics and plaque morphologies in Vero and C6/36 cells. Both viruses were inhibited by NITD008 treatment. This in vitro ligation method will facilitate manipulation of the viral genome through genetic modifications of four separated subclones of ZIKV for the rapid and rational development of candidate vaccines and viral replication study.
Virologica Sinica | 2016
Si-Qing Liu; Bo Zhang
Since early 2015,an unprecedented outbreak of Zika virus(ZIKV)infection that recognized in northeast Brazil has spread to Latin America(Schuler-Faccini,2016).As of January 2016,there has been confirmed autochthonous transmission of ZIKV in 19 countries in the Americas outside Brazil(Hennessey,2016).In