Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siamak Nejati is active.

Publication


Featured researches published by Siamak Nejati.


ACS Nano | 2015

Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters

François Perreault; Andreia Fonseca de Faria; Siamak Nejati; Menachem Elimelech

Graphene oxide (GO) is a promising material for the development of antimicrobial surfaces due to its contact-based antimicrobial activity. However, the relationship between GO physicochemical properties and its antimicrobial activity has yet to be elucidated. In this study, we investigated the size-dependency of GO antimicrobial activity using the Gram-negative bacteria Escherichia coli. GO suspensions of average sheet area ranging from 0.01 to 0.65 μm(2) were produced and their antimicrobial activity evaluated in cell suspensions or as a model GO surface coating. The antimicrobial activity of GO surface coatings increased 4-fold when GO sheet area decreased from 0.65 to 0.01 μm(2). The higher antimicrobial effect of smaller GO sheets is attributed to oxidative mechanisms associated with the higher defect density of smaller sheets. In contrast, in suspension assays, GO interacted with bacteria in a cell entrapment mechanism; in this case, the antimicrobial effect of GO increased with increasing sheet area, with apparent complete inactivation observed for the 0.65 μm(2) sheets after a 3 h exposure. However, cell inactivation by GO entrapment was reversible and all initially viable cells could be recovered when separated from GO sheets by sonication. These findings provide useful guidelines for future development of graphene-based antimicrobial surface coatings, where smaller sheet sizes can increase the antimicrobial activity of the material. Our study further emphasizes the importance of an accurate assessment of the antimicrobial effect of nanomaterials when used for antimicrobial surface design.


Water Research | 2014

In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation

Moshe Ben-Sasson; Xinglin Lu; Edo Bar-Zeev; Katherine R. Zodrow; Siamak Nejati; Genggeng Qi; Emmanuel P. Giannelis; Menachem Elimelech

The potential to incorporate silver nanoparticles (Ag-NPs) as biocides in membranes for water purification has gained much interest in recent years. However, a viable strategy for loading the Ag-NPs on the membrane remains challenging. This paper presents a novel, facile procedure for loading Ag-NPs on thin-film composite (TFC) reverse osmosis membranes. Reaction of silver salt with a reducing agent on the membrane surface resulted in uniform coverage of Ag-NPs, irreversibly bound to the membrane, as confirmed by XPS, TEM, and SEM analyses. Salt selectivity of the membrane as well its surface roughness, hydrophilicity, and zeta potential were not impacted by Ag-NP functionalization, while a slight reduction (up to 17%) in water permeability was observed. The formed Ag-NPs imparted strong antibacterial activity to the membrane, leading to reduction of more than 75% in the number of live bacteria attached to the membrane for three model bacteria strains. In addition, confocal microscopy analyses revealed that Ag-NPs significantly suppressed biofilm formation, with 41% reduction in total biovolume and significant reduction in EPS, dead, and live bacteria on the functionalized membrane. The simplicity of the method, the short reaction time, the ability to load the Ag-NPs on site, and the strong imparted antibacterial activity highlight the potential of this method in real-world RO membrane applications.


ACS Nano | 2014

Scalable fabrication of polymer membranes with vertically aligned 1 nm pores by magnetic field directed self-Assembly

Xunda Feng; Marissa E. Tousley; Matthew G. Cowan; Brian R. Wiesenauer; Siamak Nejati; Youngwoo Choo; Richard D. Noble; Menachem Elimelech; Douglas L. Gin; Chinedum O. Osuji

There is long-standing interest in developing membranes possessing uniform pores with dimensions in the range of 1 nm and physical continuity in the macroscopic transport direction to meet the needs of challenging small molecule and ionic separations. Here we report facile, scalabe fabrication of polymer membranes with vertically (i.e., along the through-plane direction) aligned 1 nm pores by magnetic-field alignment and subsequent cross-linking of a liquid crystalline mesophase. We utilize a wedge-shaped amphiphilic species as the building block of a thermotropic columnar mesophase with 1 nm ionic nanochannels, and leverage the magnetic anisotropy of the amphiphile to control the alignment of these pores with a magnetic field. In situ X-ray scattering and subsequent optical microscopy reveal the formation of highly ordered nanostructured mesophases and cross-linked polymer films with orientational order parameters of ca. 0.95. High-resolution transmission electron microscopy (TEM) imaging provides direct visualization of long-range persistence of vertically aligned, hexagonally packed nanopores in unprecedented detail, demonstrating high-fidelity retention of structure and alignment after photo-cross-linking. Ionic conductivity measurements on the aligned membranes show a remarkable 85-fold enhancement of conductivity over nonaligned samples. These results provide a path to achieving the large area control of morphology and related enhancement of properties required for high-performance membranes and other applications.


Journal of Hazardous Materials | 2009

Phenols removal by immobilized horseradish peroxidase.

I. Alemzadeh; Siamak Nejati

Application of immobilized horseradish peroxidase (HRP) in porous calcium alginate (ca-alginate) for the purpose of phenol removal is reported. The optimal conditions for immobilization of HRP in ca-alginate were identified. Gelation (encapsulation) was optimized at 1.0% (w/v) sodium alginate in the presence of 5.5% (w/v) of calcium chloride. Upon immobilization, pH profile of enzyme activity changes as it shows higher value at basic and acidic solution. Increasing initial phenol concentration results in a decrease in % conversion. The highest conversion belongs to phenol concentration of 2mM. Investigation into time course of phenol removal for both encapsulated and free enzymes showed that encapsulated enzyme had lower efficiency in comparison with the same concentration of free enzyme; however the capsules were reusable up to four cycles without any changes in their retention activity. Increasing enzyme concentration from 0.15 to 0.8 units/g alginate results in gradual increase in phenol removal. The ratio of hydrogen peroxide/phenol at which highest phenol removal obtained is found to be dependent on initial phenol concentration and in the solution of 2 and 8mM phenol it was 1.15 and 0.94 respectively.


Environmental Science and Technology Letters | 2014

Omniphobic Membrane for Robust Membrane Distillation

Shihong Lin; Siamak Nejati; Chanhee Boo; Yunxia Hu; Chinedum O. Osuji; Menachem Elimelech

In this work, we fabricate an omniphobic microporous membrane for membrane distillation (MD) by modifying a hydrophilic glass fiber membrane with silica nanoparticles followed by surface fluorination and polymer coating. The modified glass fiber membrane exhibits an anti-wetting property not only against water but also against low surface tension organic solvents that easily wet a hydrophobic polytetrafluoroethylene (PTFE) membrane that is commonly used in MD applications. By comparing the performance of the PTFE and omniphobic membranes in direct contact MD experiments in the presence of a surfactant (sodium dodecyl sulfate, SDS), we show that SDS wets the hydrophobic PTFE membrane but not the omniphobic membrane. Our results suggest that omniphobic membranes are critical for MD applications with feed waters containing surface active species, such as oil and gas produced water, to prevent membrane pore wetting.


Nano Letters | 2011

Pore Filling of Nanostructured Electrodes in Dye Sensitized Solar Cells by Initiated Chemical Vapor Deposition

Siamak Nejati; Kenneth K. S. Lau

The dye sensitized solar cell (DSSC) operation depends on a liquid electrolyte. To achieve better performance, the liquid should be replaced with a solid or gel electrolyte, e.g., polymers. Here, we demonstrate initiated chemical vapor deposition as an effective liquid-free means for in situ polymerization and pore filling. We achieve complete pore filling of 12 μm thick titania resulting in enhanced cell performance that is attributed to reduced charge recombination at the electrolyte-electrode interface.


ACS Nano | 2016

Thin Polymer Films with Continuous Vertically Aligned 1 nm Pores Fabricated by Soft Confinement

Xunda Feng; Siamak Nejati; Matthew G. Cowan; Marissa E. Tousley; Brian R. Wiesenauer; Richard D. Noble; Menachem Elimelech; Douglas L. Gin; Chinedum O. Osuji

Membrane separations are critically important in areas ranging from health care and analytical chemistry to bioprocessing and water purification. An ideal nanoporous membrane would consist of a thin film with physically continuous and vertically aligned nanopores and would display a narrow distribution of pore sizes. However, the current state of the art departs considerably from this ideal and is beset by intrinsic trade-offs between permeability and selectivity. We demonstrate an effective and scalable method to fabricate polymer films with ideal membrane morphologies consisting of submicron thickness films with physically continuous and vertically aligned 1 nm pores. The approach is based on soft confinement to control the orientation of a cross-linkable mesophase in which the pores are produced by self-assembly. The scalability, exceptional ease of fabrication, and potential to create a new class of nanofiltration membranes stand out as compelling aspects.


ACS Nano | 2014

Thickness-dependent crossover from charge- to strain-mediated magnetoelectric coupling in ferromagnetic/piezoelectric oxide heterostructures.

Steven R. Spurgeon; Jennifer D. Sloppy; Despoina M. Kepaptsoglou; Prasanna V. Balachandran; Siamak Nejati; J. Karthik; Anoop R. Damodaran; Craig L. Johnson; Hailemariam Ambaye; Richard Goyette; Valeria Lauter; Quentin M. Ramasse; Juan Carlos Idrobo; Kenneth K. S. Lau; Samuel E. Lofland; James M. Rondinelli; Lane W. Martin; Mitra L. Taheri

Magnetoelectric oxide heterostructures are proposed active layers for spintronic memory and logic devices, where information is conveyed through spin transport in the solid state. Incomplete theories of the coupling between local strain, charge, and magnetic order have limited their deployment into new information and communication technologies. In this study, we report direct, local measurements of strain- and charge-mediated magnetization changes in the La0.7Sr0.3MnO3/PbZr0.2Ti0.8O3 system using spatially resolved characterization techniques in both real and reciprocal space. Polarized neutron reflectometry reveals a graded magnetization that results from both local structural distortions and interfacial screening of bound surface charge from the adjacent ferroelectric. Density functional theory calculations support the experimental observation that strain locally suppresses the magnetization through a change in the Mn-eg orbital polarization. We suggest that this local coupling and magnetization suppression may be tuned by controlling the manganite and ferroelectric layer thicknesses, with direct implications for device applications.


ACS Nano | 2014

Enhanced charge storage of ultrathin polythiophene films within porous nanostructures.

Siamak Nejati; Thomas E. Minford; Yuriy Y. Smolin; Kenneth K. S. Lau

In a single step polymerization and coating, oxidative chemical vapor deposition (oCVD) has been used to synthesize unsubstituted polythiophene. Coatings have been conformally coated within porous nanostructures of anodized aluminum oxide, titanium dioxide, and activated carbon. Significant enhancement in charge capacity has been found with ultrathin polythiophene coatings that preserve the surface area and pore space of the nanostructures. Pseudocapacitors consisting of ultrathin polythiophene coated within activated carbon yielded increases of 50 and 250% in specific and volumetric capacitance compared with bare activated carbon. Devices were stable up to the 5000 cycles tested with only a 10% decrease in capacitance.


Nature Communications | 2015

Polarization screening-induced magnetic phase gradients at complex oxide interfaces

Steven R. Spurgeon; Prasanna V. Balachandran; Despoina M. Kepaptsoglou; Anoop R. Damodaran; J. Karthik; Siamak Nejati; Lewys Jones; Haile Ambaye; Valeria Lauter; Quentin M. Ramasse; Kenneth K. S. Lau; Lane W. Martin; James M. Rondinelli; Mitra L. Taheri

Thin-film oxide heterostructures show great potential for use in spintronic memories, where electronic charge and spin are coupled to transport information. Here we use a La0.7Sr0.3MnO3 (LSMO)/PbZr0.2Ti0.8O3 (PZT) model system to explore how local variations in electronic and magnetic phases mediate this coupling. We present direct, local measurements of valence, ferroelectric polarization and magnetization, from which we map the phases at the LSMO/PZT interface. We combine these experimental results with electronic structure calculations to elucidate the microscopic interactions governing the interfacial response of this system. We observe a magnetic asymmetry at the LSMO/PZT interface that depends on the local PZT polarization and gives rise to gradients in local magnetic moments; this is associated with a metal-insulator transition at the interface, which results in significantly different charge-transfer screening lengths. This study establishes a framework to understand the fundamental asymmetries of magnetoelectric coupling in oxide heterostructures.

Collaboration


Dive into the Siamak Nejati's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge