Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sibao Wang is active.

Publication


Featured researches published by Sibao Wang.


PLOS Genetics | 2011

Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

Qiang Gao; Kai Jin; Sheng-Hua Ying; Yongjun Zhang; Guohua Xiao; Yanfang Shang; Zhibing Duan; Xiao Xiao Hu; Xue-Qin Xie; Gang Zhou; Guoxiong Peng; Zhibing Luo; Wei Huang; Bing Wang; Weiguo Fang; Sibao Wang; Yi Zhong; Li-Jun Ma; Raymond J. St. Leger; Guoping Zhao; Yan Pei; Ming-Guang Feng; Yuxian Xia; Chengshu Wang

Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Fighting malaria with engineered symbiotic bacteria from vector mosquitoes

Sibao Wang; Anil K. Ghosh; Nicholas J. Bongio; Kevin A. Stebbings; David J. Lampe; Marcelo Jacobs-Lorena

The most vulnerable stages of Plasmodium development occur in the lumen of the mosquito midgut, a compartment shared with symbiotic bacteria. Here, we describe a strategy that uses symbiotic bacteria to deliver antimalaria effector molecules to the midgut lumen, thus rendering host mosquitoes refractory to malaria infection. The Escherichia coli hemolysin A secretion system was used to promote the secretion of a variety of anti-Plasmodium effector proteins by Pantoea agglomerans, a common mosquito symbiotic bacterium. These engineered P. agglomerans strains inhibited development of the human malaria parasite Plasmodium falciparum and rodent malaria parasite Plasmodium berghei by up to 98%. Significantly, the proportion of mosquitoes carrying parasites (prevalence) decreased by up to 84% for two of the effector molecules, scorpine, a potent antiplasmodial peptide and (EPIP)4, four copies of Plasmodium enolase–plasminogen interaction peptide that prevents plasminogen binding to the ookinete surface. We demonstrate the use of an engineered symbiotic bacterium to interfere with the development of P. falciparum in the mosquito. These findings provide the foundation for the use of genetically modified symbiotic bacteria as a powerful tool to combat malaria.


Journal of Applied Microbiology | 2009

The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis

Fanghua Liu; Sibao Wang; Jian Zhang; Xing Yan; H. K. Zhou; Guoping Zhao; Zhihua Zhou

Aims:  To identify the bacterial and archaeal composition in a mesophilic biogas digester treating pig manure and to compare the consistency of two 16S rDNA‐based methods to investigate the microbial structure.


Trends in Biotechnology | 2013

Genetic approaches to interfere with malaria transmission by vector mosquitoes

Sibao Wang; Marcelo Jacobs-Lorena

Malaria remains one of the most devastating diseases worldwide, causing over 1 million deaths every year. The most vulnerable stages of Plasmodium development in the vector mosquito occur in the midgut lumen, making the midgut a prime target for intervention. Mosquito transgenesis and paratransgenesis are two novel strategies that aim at rendering the vector incapable of sustaining Plasmodium development. Mosquito transgenesis involves direct genetic engineering of the mosquito itself for delivery of anti-Plasmodium effector molecules. Conversely, paratransgenesis involves the genetic modification of mosquito symbionts for expression of anti-pathogen effector molecules. Here we consider both genetic manipulation strategies for rendering mosquitoes refractory to Plasmodium infection, and discuss challenges for the translation of laboratory findings to field applications.


Fungal Genetics and Biology | 2009

Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae

Weiguo Fang; Monica Pava-Ripoll; Sibao Wang; Raymond J. St. Leger

Metarhizium anisopliae is a model system for studying insect fungal pathogenesis. The role of cAMP signal transduction in virulence was studied by disrupting the class I PKA catalytic subunit gene (MaPKA1). The PKA mutant (DeltaMaPKA1) showed reduced growth and greatly reduced virulence. PKA was dispensable for differentiation of infection structures (appressoria), but differentiation was delayed and the appressoria were defective because of reduced turgor pressure. DeltaMaPKA1 germinated at similar rates as the wild type in glucose and glycerol, but germination was delayed on alanine. Conidial adhesion and appressorium formation by DeltaMaPKA1 against a plastic surface was fully inhibited with glucose as sole nutrient source. Adhesion to plastic was not inhibited with glycerol or alanine, but appressorium formation was delayed. DeltaMaPKA1 showed reduced tolerance to the oxidative agent diamide, but not to H(2)O(2) and methyl-viologen. Comparative transcriptome analysis of DeltaMaPKA1 and the wild type strain showed that PKA is responsible for up-regulating approximately one-third of the genes induced by insect cuticle, including subsets of those responsible for differentiation of appressoria and penetration pegs, cuticle degradation, nutrient acquisition, pH regulation, lipid synthesis, cell cycle control and the cytoskeleton. PKA was not however required for expression of toxin-producing genes. We conclude therefore that MaPKA1 is required for sensing host-related stimuli and transduction of these signals to regulate many infection processes.


Microbiology | 2011

The rhizosphere-competent entomopathogen Metarhizium anisopliae expresses a specific subset of genes in plant root exudate.

Monica Pava-Ripoll; Claudia Angelini; Weiguo Fang; Sibao Wang; Francisco J. Posada; Raymond J. St. Leger

Metarhizium anisopliae and Beauveria bassiana are ubiquitous insect pathogens and possible plant symbionts, as some strains are endophytic or colonize the rhizosphere. We evaluated 11 strains of M. anisopliae and B. bassiana, and two soil saprophytes (the non-rhizospheric Aspergillus niger and the rhizosphere-competent Trichoderma harzianum) for their ability to germinate in bean root exudates (REs). Our results showed that some generalist strains of M. anisopliae were as good at germinating in RE as T. harzianum, although germination rates of the specialized acridid pathogen Metarhizium acridum and the B. bassiana strains were significantly lower. At RE concentrations of <1 mg ml(-1), M. anisopliae strain ARSEF 2575 showed higher germination rates than T. harzianum. Microarrays showed that strain 2575 upregulated 29 genes over a 12 h period in RE. A similar number of genes (21) were downregulated. Upregulated genes were involved in carbohydrate metabolism, lipid metabolism, cofactors and vitamins, energy metabolism, proteolysis, extracellular matrix/cell wall proteins, transport proteins, DNA synthesis, the sexual cycle and stress response. However, 41.3% of the upregulated genes were hypothetical or orphan sequences, indicating that many previously uncharacterized genes have functions related to saprophytic survival. Genes upregulated in response to RE included the subtilisin Pr1A, which is also involved in pathogenicity to insects. However, the upregulated Mad2 adhesin specifically mediates adhesion to plant surfaces, demonstrating that M. anisopliae has genes for rhizosphere competence that are induced by RE.


PLOS Pathogens | 2011

Insertion of an Esterase Gene into a Specific Locust Pathogen (Metarhizium acridum) Enables It to Infect Caterpillars

Sibao Wang; Weiguo Fang; Chengshu Wang; Raymond J. St. Leger

An enduring theme in pathogenic microbiology is poor understanding of the mechanisms of host specificity. Metarhizium is a cosmopolitan genus of invertebrate pathogens that contains generalist species with broad host ranges such as M. robertsii (formerly known as M. anisopliae var. anisopliae) as well as specialists such as the acridid-specific grasshopper pathogen M. acridum. During growth on caterpillar (Manduca sexta) cuticle, M. robertsii up-regulates a gene (Mest1) that is absent in M. acridum and most other fungi. Disrupting M. robertsii Mest1 reduced virulence and overexpression increased virulence to caterpillars (Galleria mellonella and M. sexta), while virulence to grasshoppers (Melanoplus femurrubrum) was unaffected. When Mest1 was transferred to M. acridum under control of its native M. robertsii promoter, the transformants killed and colonized caterpillars in a similar fashion to M. robertsii. MEST1 localized exclusively to lipid droplets in M. robertsii conidia and infection structures was up-regulated during nutrient deprivation and had esterase activity against lipids with short chain fatty acids. The mobilization of stored lipids was delayed in the Mest1 disruptant mutant. Overall, our results suggest that expression of Mest1 allows rapid hydrolysis of stored lipids, and promotes germination and infection structure formation by M. robertsii during nutrient deprivation and invasion, while Mest1 expression in M. acridum broadens its host range by bypassing the regulatory signals found on natural hosts that trigger the mobilization of endogenous nutrient reserves. This study suggests that speciation in an insect pathogen could potentially be driven by host shifts resulting from changes in a single gene.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Multiple pathways for Plasmodium ookinete invasion of the mosquito midgut

Joel Vega-Rodríguez; Anil K. Ghosh; Stefan M. Kanzok; Rhoel R. Dinglasan; Sibao Wang; Nicholas J. Bongio; Dario E. Kalume; Kazutoyo Miura; Carole A. Long; Akhilesh Pandey; Marcelo Jacobs-Lorena

Significance Malaria is among the most devastating parasitic diseases. Invasion of the mosquito midgut by motile malaria ookinetes requires specific interactions between proteins of both organisms. This study reports on a novel mosquito midgut receptor [enolase-binding protein (EBP)] that is recognized by an ookinete surface ligand (enolase). We also show that Plasmodium ookinetes invade the mosquito midgut by at least two different pathways: one dependent on and the other independent of the EBP–enolase interaction. Furthermore, we provide evidence for a second universal midgut receptor essential for midgut invasion by both human and rodent malaria parasites. These findings may lead to the development of novel targets for transmission-blocking interventions. Plasmodium ookinete invasion of the mosquito midgut is a crucial step of the parasite life cycle but little is known about the molecular mechanisms involved. Previously, a phage display peptide library screen identified SM1, a peptide that binds to the mosquito midgut epithelium and inhibits ookinete invasion. SM1 was characterized as a mimotope of an ookinete surface enolase and SM1 presumably competes with enolase, the presumed ligand, for binding to a putative midgut receptor. Here we identify a mosquito midgut receptor that binds both SM1 and ookinete surface enolase, termed “enolase-binding protein” (EBP). Moreover, we determined that Plasmodium berghei parasites are heterogeneous for midgut invasion, as some parasite clones are strongly inhibited by SM1 whereas others are not. The SM1-sensitive parasites required the mosquito EBP receptor for midgut invasion whereas the SM1-resistant parasites invaded the mosquito midgut independently of EBP. These experiments provide evidence that Plasmodium ookinetes can invade the mosquito midgut by alternate pathways. Furthermore, another peptide from the original phage display screen, midgut peptide 2 (MP2), strongly inhibited midgut invasion by P. berghei (SM1-sensitive and SM1-resistant) and Plasmodium falciparum ookinetes, suggesting that MP2 binds to a separate, universal receptor for midgut invasion.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Local adaptation of an introduced transgenic insect fungal pathogen due to new beneficial mutations

Sibao Wang; Tammatha R. O’Brien; Monica Pava-Ripoll; Raymond J. St. Leger

Genetically modified Metarhizium spp represent a major new arsenal for combating insect pests and insect-borne diseases. However, for these tools to be used safely and effectively, we need a much better understanding of their evolutionary potential and invasion ecology. In order to model natural as well as anthropogenic dispersal scenarios, we investigated evolutionary processes in a green fluorescent protein tagged strain of Metarhizium robertsii following transfer from a semitropical to a temperate soil community. Adaptive changes occurred over four years despite recurrent genetic bottlenecks and lack of recombination with locally well adapted strains. By coupling microarray-based functional analysis with DNA hybridizations we determined that expression of cell wall and stress response genes evolved at an accelerated rate in multiple replicates, whereas virulence determinants, transposons, and chromosome structure were unaltered. The mutable genes were enriched for TATA boxes possibly because they are larger mutational targets. In further field trials, we showed that the new mutations increased the fitness of M. robertsii in the new range by enhancing saprophytic associations, and these benefits were maintained in subsequent years. Consistent with selection being habitat rather than host specific, populations of an avirulent mutant cycled with seasons similarly to the wild type, whereas a mutant unable to adhere to plant roots showed a linear decrease in population. Our results provide a mechanistic basis for understanding postrelease adaptations, show that agents can be selected that lack gene flow and virulence evolution, and describe a means of genetically containing transgenic strains by disrupting the Mad2 gene.


Annual Review of Entomology | 2017

Insect Pathogenic Fungi: Genomics, Molecular Interactions, and Genetic Improvements

Chengshu Wang; Sibao Wang

Entomopathogenic fungi play a pivotal role in the regulation of insect populations in nature, and representative species have been developed as promising environmentally friendly mycoinsecticides. Recent advances in the genome biology of insect pathogenic fungi have revealed genomic features associated with fungal adaptation to insect hosts and different host ranges, as well as the evolutionary relationships between insect and noninsect pathogens. By using species in the Beauveria and Metarhizium genera as models, molecular biology studies have revealed the genes that function in fungus-insect interactions and thereby contribute to fungal virulence. Taken together with efforts toward genetic improvement of fungal virulence and stress resistance, knowledge of entomopathogenic fungi will potentiate cost-effective applications of mycoinsecticides for pest control in the field. Relative to our advanced insights into the mechanisms of fungal pathogenesis in plants and humans, future studies will be necessary to unravel the gene-for-gene relationships in fungus-insect interactive models.

Collaboration


Dive into the Sibao Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chengshu Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ge Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guoping Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anil K. Ghosh

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bing Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fanghua Liu

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge