Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siddhartha Jaiswal is active.

Publication


Featured researches published by Siddhartha Jaiswal.


The New England Journal of Medicine | 2014

Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes

Siddhartha Jaiswal; Jason Flannick; Alisa K. Manning; Peter Grauman; Brenton G. Mar; R. Coleman Lindsley; Craig H. Mermel; Noël P. Burtt; Alejandro Chavez; John M. Higgins; Vladislav Moltchanov; Frank C. Kuo; Michael J. Kluk; Brian E. Henderson; Leena Kinnunen; Heikki A. Koistinen; Claes Ladenvall; Gad Getz; Adolfo Correa; Benjamin F. Banahan; Stacey Gabriel; Sekar Kathiresan; Heather M. Stringham; Mark I. McCarthy; Michael Boehnke; Jaakko Tuomilehto; Christopher A. Haiman; Leif Groop; Gil Atzmon; James G. Wilson

BACKGROUND The incidence of hematologic cancers increases with age. These cancers are associated with recurrent somatic mutations in specific genes. We hypothesized that such mutations would be detectable in the blood of some persons who are not known to have hematologic disorders. METHODS We analyzed whole-exome sequencing data from DNA in the peripheral-blood cells of 17,182 persons who were unselected for hematologic phenotypes. We looked for somatic mutations by identifying previously characterized single-nucleotide variants and small insertions or deletions in 160 genes that are recurrently mutated in hematologic cancers. The presence of mutations was analyzed for an association with hematologic phenotypes, survival, and cardiovascular events. RESULTS Detectable somatic mutations were rare in persons younger than 40 years of age but rose appreciably in frequency with age. Among persons 70 to 79 years of age, 80 to 89 years of age, and 90 to 108 years of age, these clonal mutations were observed in 9.5% (219 of 2300 persons), 11.7% (37 of 317), and 18.4% (19 of 103), respectively. The majority of the variants occurred in three genes: DNMT3A, TET2, and ASXL1. The presence of a somatic mutation was associated with an increase in the risk of hematologic cancer (hazard ratio, 11.1; 95% confidence interval [CI], 3.9 to 32.6), an increase in all-cause mortality (hazard ratio, 1.4; 95% CI, 1.1 to 1.8), and increases in the risks of incident coronary heart disease (hazard ratio, 2.0; 95% CI, 1.2 to 3.4) and ischemic stroke (hazard ratio, 2.6; 95% CI, 1.4 to 4.8). CONCLUSIONS Age-related clonal hematopoiesis is a common condition that is associated with increases in the risk of hematologic cancer and in all-cause mortality, with the latter possibly due to an increased risk of cardiovascular disease. (Funded by the National Institutes of Health and others.).


Cell | 2009

CD47 Is an Adverse Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells

Ravindra Majeti; Mark P. Chao; Ash A. Alizadeh; Wendy W. Pang; Siddhartha Jaiswal; Kenneth D. Gibbs; Nico van Rooijen; Irving L. Weissman

Acute myeloid leukemia (AML) is organized as a cellular hierarchy initiated and maintained by a subset of self-renewing leukemia stem cells (LSC). We hypothesized that increased CD47 expression on human AML LSC contributes to pathogenesis by inhibiting their phagocytosis through the interaction of CD47 with an inhibitory receptor on phagocytes. We found that CD47 was more highly expressed on AML LSC than their normal counterparts, and that increased CD47 expression predicted worse overall survival in three independent cohorts of adult AML patients. Furthermore, blocking monoclonal antibodies directed against CD47 preferentially enabled phagocytosis of AML LSC and inhibited their engraftment in vivo. Finally, treatment of human AML LSC-engrafted mice with anti-CD47 antibody depleted AML and targeted AML LSC. In summary, increased CD47 expression is an independent, poor prognostic factor that can be targeted on human AML stem cells with blocking monoclonal antibodies capable of enabling phagocytosis of LSC.


Cell | 2009

CD47 Is Upregulated on Circulating Hematopoietic Stem Cells and Leukemia Cells to Avoid Phagocytosis

Siddhartha Jaiswal; Catriona Jamieson; Wendy W. Pang; Christopher Y. Park; Mark P. Chao; Ravindra Majeti; David Traver; Nico van Rooijen; Irving L. Weissman

Macrophages clear pathogens and damaged or aged cells from the blood stream via phagocytosis. Cell-surface CD47 interacts with its receptor on macrophages, SIRPalpha, to inhibit phagocytosis of normal, healthy cells. We find that mobilizing cytokines and inflammatory stimuli cause CD47 to be transiently upregulated on mouse hematopoietic stem cells (HSCs) and progenitors just prior to and during their migratory phase, and that the level of CD47 on these cells determines the probability that they are engulfed in vivo. CD47 is also constitutively upregulated on mouse and human myeloid leukemias, and overexpression of CD47 on a myeloid leukemia line increases its pathogenicity by allowing it to evade phagocytosis. We conclude that CD47 upregulation is an important mechanism that provides protection to normal HSCs during inflammation-mediated mobilization, and that leukemic progenitors co-opt this ability in order to evade macrophage killing.


Blood | 2015

Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes

David P. Steensma; Rafael Bejar; Siddhartha Jaiswal; R. Coleman Lindsley; Mikkael A. Sekeres; Robert P. Hasserjian; Benjamin L. Ebert

Recent genetic analyses of large populations have revealed that somatic mutations in hematopoietic cells leading to clonal expansion are commonly acquired during human aging. Clonally restricted hematopoiesis is associated with an increased risk of subsequent diagnosis of myeloid or lymphoid neoplasia and increased all-cause mortality. Although myelodysplastic syndromes (MDS) are defined by cytopenias, dysplastic morphology of blood and marrow cells, and clonal hematopoiesis, most individuals who acquire clonal hematopoiesis during aging will never develop MDS. Therefore, acquisition of somatic mutations that drive clonal expansion in the absence of cytopenias and dysplastic hematopoiesis can be considered clonal hematopoiesis of indeterminate potential (CHIP), analogous to monoclonal gammopathy of undetermined significance and monoclonal B-cell lymphocytosis, which are precursor states for hematologic neoplasms but are usually benign and do not progress. Because mutations are frequently observed in healthy older persons, detection of an MDS-associated somatic mutation in a cytopenic patient without other evidence of MDS may cause diagnostic uncertainty. Here we discuss the nature and prevalence of CHIP, distinction of this state from MDS, and current areas of uncertainty regarding diagnostic criteria for myeloid malignancies.


Science Translational Medicine | 2010

Calreticulin Is the Dominant Pro-Phagocytic Signal on Multiple Human Cancers and Is Counterbalanced by CD47

Mark P. Chao; Siddhartha Jaiswal; Rachel Weissman-Tsukamoto; Ash A. Alizadeh; Andrew J. Gentles; Jens Peter Volkmer; Kipp Weiskopf; Stephen B. Willingham; Tal Raveh; Christopher Y. Park; Ravindra Majeti; Irving L. Weissman

Calreticulin-induced phagocytosis of cancer cells can be counterbalanced by CD47 expression. Eat Up! Immune cells constantly patrol the body on a search and destroy campaign against foreign invaders. Designed to detect differential molecular signals, cells of the immune system can distinguish healthy from infected tissue by the types of proteins produced: Infected cells, for example, often produce unfamiliar proteins, which then activate innate immune cells to “eat” (phagocytose) the infected ones. Cancer cells also carry aberrant cargo such as unfamiliar proteins or normal proteins at abnormal levels, yet these cells frequently escape immune attack because they express a “don’t eat me” signal, the cell surface protein CD47. Blocking this signal on a cancer cell makes them targets for phagocytosis, but surprisingly does not do the same for normal cells that express CD47. Chao et al. have now identified calreticulin as the “eat me” signal on cancer cells that leads to phagocytosis when the counterbalancing “don’t eat me” signal CD47 is blocked. Calreticulin is a pro-phagocytic molecule that is highly expressed on the surface of several types of human cancer cells, including acute myeloid and lymphoblastic leukemias, chronic myeloid leukemia, non-Hodgkin’s lymphoma, bladder cancer, glioblastoma, and ovarian cancer. However, calreticulin is expressed only at very low levels on normal cells. Chao et al. found a correlation between calreticulin and CD47 expression levels on cancer cells and showed that blocking the interaction between calreticulin and its ligand prevented phagocytosis initiated by blocking the “don’t eat me” signal CD47. Moreover, high calreticulin expression on cancer cells was a poor prognostic indicator in human patients with neuroblastoma, bladder cancer, and non-Hodgkin’s lymphoma. Therefore, a balance between calreticulin and CD47 expression in cancer cells may be a double-edged sword: In the absence of a CD47 blocker, this equilibrium may support tumor cell survival, but when CD47 function is inhibited, the presence of calreticulin tells immune cells to “eat up!” This information provides a key insight for the therapeutic development of CD47-inhibitory agents. Under normal physiological conditions, cellular homeostasis is partly regulated by a balance of pro- and anti-phagocytic signals. CD47, which prevents cancer cell phagocytosis by the innate immune system, is highly expressed on several human cancers including acute myeloid leukemia, non-Hodgkin’s lymphoma, and bladder cancer. Blocking CD47 with a monoclonal antibody results in phagocytosis of cancer cells and leads to in vivo tumor elimination, yet normal cells remain mostly unaffected. Thus, we postulated that cancer cells must also display a potent pro-phagocytic signal. Here, we identified calreticulin as a pro-phagocytic signal that was highly expressed on the surface of several human cancers, but was minimally expressed on most normal cells. Increased CD47 expression correlated with high amounts of calreticulin on cancer cells and was necessary for protection from calreticulin-mediated phagocytosis. Blocking the interaction of target cell calreticulin with its receptor, low-density lipoprotein receptor–related protein, on phagocytic cells prevented anti-CD47 antibody–mediated phagocytosis. Furthermore, increased calreticulin expression was an adverse prognostic factor in diverse tumors including neuroblastoma, bladder cancer, and non-Hodgkin’s lymphoma. These findings identify calreticulin as the dominant pro-phagocytic signal on several human cancers, provide an explanation for the selective targeting of tumor cells by anti-CD47 antibody, and highlight the balance between pro- and anti-phagocytic signals in the immune evasion of cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias.

Siddhartha Jaiswal; David Traver; Toshihiro Miyamoto; Koichi Akashi; Eric Lagasse; Irving L. Weissman

Chronic myelogenous leukemia is a myeloproliferative disorder (MPD) that, over time, progresses to acute leukemia. Both processes are closely associated with the t(9;22) chromosomal translocation that creates the BCR/ABL fusion gene in hematopoietic stem cells (HSCs) and their progeny. Chronic myelogenous leukemia is therefore classified as an HSC disorder in which a clone of multipotent HSCs is likely to be malignantly transformed, although direct evidence for malignant t(9;22)+ HSCs is lacking. To test whether HSC malignancy is required, we generated hMRP8p210BCR/ABL transgenic mice in which expression of BCR/ABL is absent in HSCs and targeted exclusively to myeloid progenitors and their myelomonocytic progeny. Four of 13 BCR/ABL transgenic founders developed a chronic MPD, but only one progressed to blast crisis. To address whether additional oncogenic events are required for progression to acute disease, we crossed hMRP8p210BCR/ABL mice to apoptosis-resistant hMRP8BCL-2 mice. Of 18 double-transgenic animals, 9 developed acute myeloid leukemias that were transplantable to wild-type recipients. Taken together, these data indicate that a MPD can arise in mice without expression of BCR/ABL in HSCs and that additional mutations inhibiting programmed cell death may be critical in the transition of this disease to blast-crisis leukemia.


The New England Journal of Medicine | 2017

Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease

Siddhartha Jaiswal; Pradeep Natarajan; Alexander J. Silver; Christopher J. Gibson; Alexander G. Bick; Eugenia Shvartz; Marie McConkey; Namrata Gupta; Stacey Gabriel; Diego Ardissino; Usman Baber; Roxana Mehran; Valentin Fuster; John Danesh; Philippe Frossard; Danish Saleheen; Olle Melander; Galina K. Sukhova; Donna Neuberg; Peter Libby; Sekar Kathiresan; Benjamin L. Ebert

BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP), which is defined as the presence of an expanded somatic blood‐cell clone in persons without other hematologic abnormalities, is common among older persons and is associated with an increased risk of hematologic cancer. We previously found preliminary evidence for an association between CHIP and atherosclerotic cardiovascular disease, but the nature of this association was unclear. METHODS We used whole‐exome sequencing to detect the presence of CHIP in peripheral‐blood cells and associated such presence with coronary heart disease using samples from four case–control studies that together enrolled 4726 participants with coronary heart disease and 3529 controls. To assess causality, we perturbed the function of Tet2, the second most commonly mutated gene linked to clonal hematopoiesis, in the hematopoietic cells of atherosclerosis‐prone mice. RESULTS In nested case–control analyses from two prospective cohorts, carriers of CHIP had a risk of coronary heart disease that was 1.9 times as great as in noncarriers (95% confidence interval [CI], 1.4 to 2.7). In two retrospective case–control cohorts for the evaluation of early‐onset myocardial infarction, participants with CHIP had a risk of myocardial infarction that was 4.0 times as great as in noncarriers (95% CI, 2.4 to 6.7). Mutations in DNMT3A, TET2, ASXL1, and JAK2 were each individually associated with coronary heart disease. CHIP carriers with these mutations also had increased coronary‐artery calcification, a marker of coronary atherosclerosis burden. Hypercholesterolemia‐prone mice that were engrafted with bone marrow obtained from homozygous or heterozygous Tet2 knockout mice had larger atherosclerotic lesions in the aortic root and aorta than did mice that had received control bone marrow. Analyses of macrophages from Tet2 knockout mice showed elevated expression of several chemokine and cytokine genes that contribute to atherosclerosis. CONCLUSIONS The presence of CHIP in peripheral‐blood cells was associated with nearly a doubling in the risk of coronary heart disease in humans and with accelerated atherosclerosis in mice. (Funded by the National Institutes of Health and others.)


Trends in Immunology | 2010

Macrophages as mediators of tumor immunosurveillance

Siddhartha Jaiswal; Mark P. Chao; Ravindra Majeti; Irving L. Weissman

Tumor immunosurveillance is a well-established mechanism for regulation of tumor growth. In this regard, most studies have focused on the role of T- and NK-cells as the critical immune effector cells. However, macrophages play a major role in the recognition and clearance of foreign, aged, and damaged cells. Macrophage phagocytosis is negatively regulated via the receptor SIRPalpha upon binding to CD47, a ubiquitously expressed protein. We recently showed that CD47 is up-regulated in myeloid leukemia and migrating hematopoietic progenitors, and that the level of protein expression correlates with the ability to evade phagocytosis. These results implicate macrophages in the immunosurveillance of hematopoietic cells and leukemias. The ability of macrophages to phagocytose tumor cells might be exploited therapeutically by blocking the CD47-SIRPalpha interaction.


Journal of Experimental Medicine | 2012

Janus-like opposing roles of CD47 in autoimmune brain inflammation in humans and mice

May H. Han; Deborah H. Lundgren; Siddhartha Jaiswal; Mark P. Chao; Kareem L. Graham; Christopher Garris; Robert C. Axtell; Peggy P. Ho; Christopher Lock; Joslyn I. Woodard; Sara E. Brownell; Maria Zoudilova; Jack F.V. Hunt; Sergio E. Baranzini; Eugene C. Butcher; Cedric S. Raine; Raymond A. Sobel; David K. Han; Irving L. Weissman; Lawrence Steinman

CD47 exerts different effects on disease in distinct cell types and locations and during different stages of experimental autoimmune encephalomyelitis.


Journal of Clinical Oncology | 2017

Clonal Hematopoiesis Associated With Adverse Outcomes After Autologous Stem-Cell Transplantation for Lymphoma

Christopher J. Gibson; R. Coleman Lindsley; Vatche Tchekmedyian; Brenton G. Mar; Jiantao Shi; Siddhartha Jaiswal; Alysia Bosworth; Liton Francisco; Jianbo He; Anita Bansal; Elizabeth A. Morgan; Ann S. LaCasce; Arnold S. Freedman; David C. Fisher; Eric D. Jacobsen; Philippe Armand; Edwin P. Alyea; John Koreth; Vincent T. Ho; Robert J. Soiffer; Joseph H. Antin; Jerome Ritz; Sarah Nikiforow; Stephen J. Forman; Franziska Michor; Donna Neuberg; Ravi Bhatia; Smita Bhatia; Benjamin L. Ebert

Purpose Clonal hematopoiesis of indeterminate potential (CHIP) is an age-related condition characterized by somatic mutations in the blood of otherwise healthy adults. We hypothesized that in patients undergoing autologous stem-cell transplantation (ASCT) for lymphoma, CHIP at the time of ASCT would be associated with an increased risk of myelodysplastic syndrome and acute myeloid leukemia, collectively termed therapy-related myeloid neoplasm (TMN), and other adverse outcomes. Methods We performed whole-exome sequencing on pre- and post-ASCT samples from 12 patients who developed TMN after autologous transplantation for Hodgkin lymphoma or non-Hodgkin lymphoma and targeted sequencing on cryopreserved aliquots of autologous stem-cell products from 401 patients who underwent ASCT for non-Hodgkin lymphoma between 2003 and 2010. We assessed the effect of CHIP at the time of ASCT on subsequent outcomes, including TMN, cause-specific mortality, and overall survival. Results For six of 12 patients in the exome sequencing cohort, mutations found in the TMN specimen were also detectable in the pre-ASCT specimen. In the targeted sequencing cohort, 120 patients (29.9%) had CHIP at the time of ASCT, which was associated with an increased rate of TMN (10-year cumulative incidence, 14.1% v 4.3% for those with and without CHIP, respectively; P = .002). Patients with CHIP had significantly inferior overall survival compared with those without CHIP (10-year overall survival, 30.4% v 60.9%, respectively; P < .001), including increased risk of death from TMN and cardiovascular disease. Conclusion In patients undergoing ASCT for lymphoma, CHIP at the time of transplantation is associated with inferior survival and increased risk of TMN.

Collaboration


Dive into the Siddhartha Jaiswal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin L. Ebert

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge