Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siddhartha S. Ghosh is active.

Publication


Featured researches published by Siddhartha S. Ghosh.


Clinical Pharmacokinectics | 2005

Clinical Pharmacokinetics of Losartan

Domenic A. Sica; Todd W.B. Gehr; Siddhartha S. Ghosh

Losartan is the first orally available angiotensin-receptor antagonist without agonist properties. Following oral administration, losartan is rapidly absorbed, reaching maximum concentrations 1–2 hours post-administration. After oral administration approximately 14% of a losartan dose is converted to the pharmacologically active E 3174 metabolite. E 3174 is 10- to 40-fold more potent than its parent compound and its estimated terminal half-life ranges from 6 to 9 hours. The pharmacokinetics of losartan and E 3174 are linear, dose-proportional and do not substantially change with repetitive administration. The recommended dosage of losartan 50 mg/day can be administered without regard to food. There are no clinically significant effects of age, sex or race on the pharmacokinetics of losartan, and no dosage adjustment is necessary in patients with mild hepatic impairment or various degrees of renal insufficiency. Losartan, or its E 3174 metabolite, is not removed during haemodialysis.The major metabolic pathway for losartan is by the cytochrome P450 (CYP) 3A4, 2C9 and 2C10 isoenzymes. Overall, losartan has a favorable drug-drug interaction profile, as evidenced by the lack of clinically relevant interactions between this drug and a range of inhibitors and stimulators of the CYP450 system. Losartan does not have a drug-drug interaction with hydrochlorothiazide, warfarin or digoxin. Losartan should be avoided in pregnancy, as is the case with all other angiotensin-receptor antagonists. When given in the second and third trimester of pregnancy, losartan is often associated with serious fetal toxicity. Losartan is a competitive antagonist that causes a parallel rightward shift of the concentration-contractile response curve to angiotensin-II, while E 3174 is a noncompetitive ‘insurmountable’ antagonist of angiotensin-II.The maximum recommended daily dose of losartan is 100mg, which can be given as a once-daily dose or by splitting the same total daily dose into two doses. Losartan reduces blood pressure comparably to other angiotensin-receptor antagonists. Losartan has been extensively studied relative to end-organ protection, with studies having been conducted in diabetic nephropathy, heart failure, post-myocardial infarction and hypertensive patients with left ventricular hypertrophy. The results of these studies have been sufficiently positive to support a more widespread use of angiotensin-receptor antagonists in the setting of various end-organ diseases. Losartan, like other angiotensin-receptor antagonists, is devoid of significant adverse effects.


American Journal of Physiology-renal Physiology | 2009

Curcumin ameliorates renal failure in 5/6 nephrectomized rats: role of inflammation

Siddhartha S. Ghosh; Hugh D Massey; Richard J. Krieg; Zafeer A Fazelbhoy; Shobha Ghosh; Domenic A. Sica; Itaf Fakhry; Todd W.B. Gehr

TNF-alpha and NF-kappaB play important roles in the development of inflammation in chronic renal failure (CRF). In hepatic cells, curcumin is shown to antagonize TNF-alpha-elicited NF-kappaB activation. In this study, we hypothesized that if inflammation plays a key role in renal failure then curcumin should be effective in improving CRF. The effectiveness of curcumin was compared with enalapril, a compound known to ameliorate human and experimental CRF. Investigation was conducted in Sprague-Dawley rats where CRF was induced by 5/6 nephrectomy (Nx). The Nx animals were divided into untreated (Nx), curcumin-treated (curcumin), and enalapril-treated (enalapril) groups. Sham-operated animals served as a control. Renal dysfunction in the Nx group, as evidenced by elevated blood urea nitrogen, plasma creatinine, proteinuria, segmental sclerosis, and tubular dilatation, was significantly reduced by curcumin and enalapril treatment. However, only enalapril significantly improved blood pressure. Compared with the control, the Nx animals had significantly higher plasma and kidney TNF-alpha, which was associated with NF-kappaB activation and macrophage infiltration in the kidney. These changes were effectively antagonized by curcumin and enalapril treatment. The decline in the anti-inflammatory peroxisome proliferator-activated receptor gamma (PPARgamma) seen in Nx animals was also counteracted by curcumin and enalapril. Studies in mesangial cells were carried out to further establish that the anti-inflammatory effect of curcumin in vivo was mediated essentially by antagonizing TNF-alpha. Curcumin dose dependently antagonized the TNF-alpha-mediated decrease in PPARgamma and blocked transactivation of NF-kappaB and repression of PPARgamma, indicating that the anti-inflamatory property of curcumin may be responsible for alleviating CRF in Nx animals.


Pediatric Nephrology | 2009

Cardiac hypertrophy in neonatal nephrectomized rats: the role of the sympathetic nervous system

Siddhartha S. Ghosh; Richard J. Krieg; Domenic A. Sica; Ruipeng Wang; Itaf Fakhry; Todd W.B. Gehr

Cardiac hypertrophy is frequently encountered in patients with renal failure and represents an independent risk factor for cardiovascular morbidity and mortality. The pathogenesis of cardiac hypertrophy is related to multiple factors, including excess adrenergic activity. This study investigated how renal injury in the early stages of life affects the adrenergic system and thereby potentially influences cardiac growth. Biomarkers of cardiac hypertrophy were used to assess adrenergic function. Newborn male Sprague-Dawley rats were allocated to three groups of five rats each: 5/6 nephrectomy (Nx), pair-fed controls (PF), and sham-operated (SH). Nx animals had significantly higher plasma urea nitrogen, serum creatinine, and mean arterial blood pressure. The heart-weight/body-weight ratio of the Nx cohort was higher than SH and PF (p < 0.001) groups. Plasma norepinephrine (NE) of Nx animals was almost twofold higher than SH and PF (p < 0.01) animals. Compared with SH and PF, Nx animals had higher α1A-receptor protein expression, lower cardiac β1- and β2-receptor protein expression (p < 0.05), but higher G-protein-coupled receptor kinase-2 (GRK2) expression (p < 0.05). Norepinephrine transporter protein (NET) and renalase protein expression in cardiac tissue from Nx pups were significantly lower than SH and PF. Our data suggest that early age Nx animals have increased circulating catecholamines due to decreased NE metabolism. Enhancement of cardiac GRK2 and NE can contribute to cardiac hypertrophy seen in Nx animals. Furthermore, AKT (activated via α1A receptors), as well as increased α1A receptors and their agonist NE, might contribute to the observed hypertrophy.


American Journal of Physiology-renal Physiology | 2012

Curcumin and enalapril ameliorate renal failure by antagonizing inflammation in 5 ⁄6 nephrectomized rats: role of phospholipase and cyclooxygenase

Siddhartha S. Ghosh; Richard J. Krieg; Hugh D Massey; Domenic A. Sica; Itaf Fakhry; Shobha Ghosh; Todd W.B. Gehr

Previously, we showed that curcumin prevents chronic kidney disease (CKD) development in ⅚ nephrectomized (Nx) rats when given within 1 wk after Nx (Ghosh SS, Massey HD, Krieg R, Fazelbhoy ZA, Ghosh S, Sica DA, Fakhry I, Gehr TW. Am J Physiol Renal Physiol 296: F1146-F1157, 2009). To better mimic the scenario for renal disease in humans, we began curcumin and enalapril therapy when proteinuria was already established. We hypothesized that curcumin, by blocking the inflammatory mediators TNF-α and IL-1β, could also reduce cyclooxygenase (COX) and phospholipase expression in the kidney. Nx animals were divided into untreated Nx, curcumin-treated, and enalapril-treated groups. Curcumin (75 mg/kg) and enalapril (10 mg/kg) were administered for 10 wk. Renal dysfunction in the Nx group, as evidenced by elevated blood urea nitrogen, plasma creatinine, proteinuria, segmental sclerosis, and tubular dilatation, was comparably reduced by curcumin and enalapril, with only enalapril significantly lowering blood pressure. Compared with controls, Nx animals had higher plasma/kidney TNF-α and IL-1β, which were reduced by curcumin and enalapril treatment. Nx animals had significantly elevated kidney levels of cytosolic PLA(2), calcium-independent intracellular PLA(2), COX 1, and COX 2, which were comparably reduced by curcumin and enalapril. Studies in mesangial cells and macrophages were carried out to establish that the in vivo increase in PLA(2) and COX were mediated by TNF-α and IL-1β and that curcumin, by antagonizing the cytokines, could significantly reduce both PLA(2) and COX. We conclude that curcumin ameliorates CKD by blocking inflammatory signals even if it is given at a later stage of the disease.


Molecules | 2014

Curcumin and chronic kidney disease (CKD): major mode of action through stimulating endogenous intestinal alkaline phosphatase.

Siddhartha S. Ghosh; Todd W.B. Gehr; Shobha Ghosh

Curcumin, an active ingredient in the traditional herbal remedy and dietary spice turmeric (Curcuma longa), has significant anti-inflammatory properties. Chronic kidney disease (CKD), an inflammatory disease, can lead to end stage renal disease resulting in dialysis and transplant. Furthermore, it is frequently associated with other inflammatory disease such as diabetes and cardiovascular disorders. This review will focus on the clinically relevant inflammatory molecules that play a role in CKD and associated diseases. Various enzymes, transcription factors, growth factors modulate production and action of inflammatory molecules; curcumin can blunt the generation and action of these inflammatory molecules and ameliorate CKD as well as associated inflammatory disorders. Recent studies have shown that increased intestinal permeability results in the leakage of pro-inflammatory molecules (cytokines and lipopolysaccharides) from gut into the circulation in diseases such as CKD, diabetes and atherosclerosis. This change in intestinal permeability is due to decreased expression of tight junction proteins and intestinal alkaline phosphatase (IAP). Curcumin increases the expression of IAP and tight junction proteins and corrects gut permeability. This action reduces the levels of circulatory inflammatory biomolecules. This effect of curcumin on intestine can explain why, despite poor bioavailability, curcumin has potential anti-inflammatory effects in vivo and beneficial effects on CKD.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Liver-specific Cholesteryl Ester Hydrolase deficiency attenuates sterol elimination in the feces and increases Atherosclerosis in Ldlr-/- Mice

Jinghua Bie; Jing Wang; Kathryn Marqueen; Rachel Osborne; Genta Kakiyama; William J. Korzun; Siddhartha S. Ghosh; Shobha Ghosh

Objective—Liver is the major organ responsible for the final elimination of cholesterol from the body either as biliary cholesterol or as bile acids. Intracellular hydrolysis of lipoprotein-derived cholesteryl esters (CEs) is essential to generate the free cholesterol required for this process. Earlier, we demonstrated that overexpression of human CE hydrolase (Gene symbol CES1) increased bile acid synthesis in human hepatocytes and enhanced reverse cholesterol transport in mice. The objective of the present study was to demonstrate that liver-specific deletion of its murine ortholog, Ces3, would decrease cholesterol elimination from the body and increase atherosclerosis. Approach and Results—Liver-specific Ces3 knockout mice (Ces3-LKO) were generated, and Ces3 deficiency did not affect the expression of genes involved in cholesterol homeostasis and free cholesterol or bile acid transport. The effects of Ces3 deficiency on the development of Western diet–induced atherosclerosis were examined in low density lipoprotein receptor knock out−/− mice. Despite similar plasma lipoprotein profiles, there was increased lesion development in low density lipoprotein receptor knock out−/−Ces3-LKO mice along with a significant decrease in the bile acid content of bile. Ces3 deficiency significantly reduced the flux of cholesterol from [3H]-CE–labeled high-density lipoproteins to feces (as free cholesterol and bile acids) and decreased total fecal sterol elimination. Conclusions—Our results demonstrate that hepatic Ces3 modulates the hydrolysis of lipoprotein-delivered CEs and thereby regulates free cholesterol and bile acid secretion into the feces. Therefore, its deficiency results in reduced cholesterol elimination from the body, leading to significant increase in atherosclerosis. Collectively, these data establish the antiatherogenic role of hepatic CE hydrolysis.


Journal of Lipid Research | 2014

Liver-specific transgenic expression of cholesteryl ester hydrolase reduces atherosclerosis in Ldlr−/− mice

Jinghua Bie; Jing Wang; Quan Yuan; Genta Kakiyama; Siddhartha S. Ghosh; Shobha Ghosh

The liver plays a central role in the final elimination of cholesterol from the body either as bile acids or as free cholesterol (FC), and lipoprotein-derived cholesterol is the major source of total biliary cholesterol. HDL is the major lipoprotein responsible for removal and transport of cholesterol, mainly as cholesteryl esters (CEs), from the peripheral tissues to the liver. While HDL-FC is rapidly secreted into bile, the fate of HDL-CE remains unclear. We have earlier demonstrated the role of human CE hydrolase (CEH, CES1) in hepatic hydrolysis of HDL-CE and increasing bile acid synthesis, a process dependent on scavenger receptor BI expression. In the present study, we examined the hypothesis that by enhancing the elimination of HDL-CE into bile/feces, liver-specific transgenic expression of CEH will be anti-atherogenic. Increased CEH expression in the liver significantly increased the flux of HDL-CE to bile acids. In the LDLR−/− background, this enhanced elimination of cholesterol led to attenuation of diet-induced atherosclerosis with a consistent increase in fecal sterol secretion primarily as bile acids. Taken together with the observed reduction in atherosclerosis by increasing macrophage CEH-mediated cholesterol efflux, these studies establish CEH as an important regulator in enhancing cholesterol elimination and also as an anti-atherogenic target.


The American Journal of the Medical Sciences | 2002

The Role of the Renin-Angiotensin System in Cholesterol and Puromycin Mediated Renal Injury

Siddhartha S. Ghosh; Domenic A. Sica; Anton C. Schoolwerth; Itaf Fakhry; Todd W.B. Gehr; Richard J. Quigg; Mark Haas

BackgroundPuromycin aminonucleoside (PAN) nephropathy is a widely studied model of glomerular sclerosis (GS) in the rat, and cholesterol feeding exacerbates the injury induced by PAN. The importance of the interaction of angiotensin II (Ang II) with the AT2 receptor is unclear. We investigated the role of the renin-angiotensin system, particularly with regard to AT1 and AT2 receptor dynamics, in PAN and cholesterol-mediated GS. MethodsSprague-Dawley rats were given a 4% cholesterol diet (group II), subcutaneous PAN (group III), or a 4% cholesterol diet and PAN (group IV) and compared with a control group given PAN vehicle (group I). After 16 weeks, kidneys were harvested and tissue Ang II concentration, angiotensin-converting enzyme (ACE) activity, and ACE, AT1, and AT2 mRNA levels were determined. ResultsCompared with control rats, proteinuria was significantly higher in groups II to IV. Kidney ACE activity and ACE mRNA levels in groups III and IV were 2- and 3-fold higher than in groups I and II, respectively. Kidney Ang II concentration also was increased in the experimental groups. Whereas kidney AT1 mRNA was significantly lower in groups III and IV, kidney AT2 mRNA was significantly increased in groups II to IV. ConclusionIn these experimental models of GS, there is significant activation of the tissue-based renin-angiotensin system. Puromycin with and without cholesterol decreased the AT1 receptor mRNA and increased the AT2 receptor mRNA. Up-regulation of AT2 receptors may be important in ameliorating the proliferative effects of Ang II, which presumably occur through the AT1 receptor.


PLOS ONE | 2015

High Fat High Cholesterol Diet (Western Diet) Aggravates Atherosclerosis, Hyperglycemia and Renal Failure in Nephrectomized LDL Receptor Knockout Mice: Role of Intestine Derived Lipopolysaccharide

Siddhartha S. Ghosh; Samuel Righi; Richard J. Krieg; Le Kang; Daniel Carl; Jing Wang; H. Davis Massey; Domenic A. Sica; Todd W.B. Gehr; Shobha Ghosh

A high fat meal, frequently known as western diet (WD), exacerbates atherosclerosis and diabetes. Both these diseases are frequently associated with renal failure. Recent studies have shown that lipopolysaccharide (LPS) leaks into the circulation from the intestine in the setting of renal failure and after WD. However, it is not clear how renal function and associated disorders are affected by LPS. This study demonstrates that circulatory LPS exacerbates renal insufficiency, atherosclerosis and glucose intolerance. Renal insufficiency was induced by 2/3 nephrectomy in LDL receptor knockout mice. Nx animals were given normal diet (Nx) or WD (Nx+WD). The controls were sham operated animals on normal diet (control) and WD (WD). To verify if LPS plays a role in exaggerating renal insufficiency, polymyxin (PM), a known LPS antagonist, and curcumin (CU), a compound known to ameliorate chronic kidney disease (CKD), was given to Nx animals on western diet (Nx+WD+PM and Nx+WD+CU, respectively). Compared to control, all other groups displayed increased circulatory LPS. The Nx+WD cohort had the highest levels of LPS. Nx group had significant renal insufficiency and glucose intolerance but not atherosclerosis. WD had intense atherosclerosis and glucose intolerance but it did not show signs of renal insufficiency. Compared to other groups, Nx+WD had significantly higher cytokine expression, macrophage infiltration in the kidney, renal insufficiency, glucose intolerance and atherosclerosis. PM treatment blunted the expression of cytokines, deterioration of renal function and associated disorders, albeit not to the levels of Nx, and was significantly inferior to CU. PM is a non-absorbable antibiotic with LPS binding properties, hence its beneficial effect can only be due to its effect within the GI tract. We conclude that LPS may not cause renal insufficiency but can exaggerate kidney failure and associated disorders following renal insufficiency.


Clinical Lipidology | 2014

Cholesterol removal from plaques and elimination from the body: change in paradigm to reduce risk for heart disease

Shobha Ghosh; Jinghua Bie; Jing Wang; Quan Yuan; Siddhartha S. Ghosh

Abstract Accumulation of lipid-laden macrophage foam cells in arterial wall is the hallmark of atherosclerosis, the underlying cause of cardiovascular disease (CVD). Increased uptake of cholesteryl ester-rich modified low-density lipoprotein (LDL) is thought to be responsible for lipid accumulation and strong inverse correlation exists between plasma LDL and CVD. However, despite reaching the target LDL levels significant residual risk for CVD remains. Furthermore, current therapeutic strategies do not lead to regression of existing plaques. This review discusses a change in paradigm emphasizing the importance of removal of cholesterol from macrophage foam cells and final elimination of cholesterol from the body. Intracellular processes involved in this process are described to provide insight into the development of new therapies for CVD.

Collaboration


Dive into the Siddhartha S. Ghosh's collaboration.

Top Co-Authors

Avatar

Shobha Ghosh

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Jing Wang

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Todd W.B. Gehr

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Domenic A. Sica

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Jinghua Bie

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Itaf Fakhry

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Richard J. Krieg

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Genta Kakiyama

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Quan Yuan

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge