Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sidi Chen is active.

Publication


Featured researches published by Sidi Chen.


Cell | 2014

CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling

Randall Jeffrey Platt; Sidi Chen; Yang Zhou; Michael J. Yim; Lukasz Swiech; Hannah R. Kempton; James E. Dahlman; Oren Parnas; Thomas Eisenhaure; Marko Jovanovic; Daniel B. Graham; Siddharth Jhunjhunwala; Matthias Heidenreich; Ramnik J. Xavier; Robert Langer; Daniel G. Anderson; Nir Hacohen; Aviv Regev; Guoping Feng; Phillip A. Sharp; Feng Zhang

CRISPR-Cas9 is a versatile genome editing technology for studying the functions of genetic elements. To broadly enable the application of Cas9 in vivo, we established a Cre-dependent Cas9 knockin mouse. We demonstrated in vivo as well as ex vivo genome editing using adeno-associated virus (AAV)-, lentivirus-, or particle-mediated delivery of guide RNA in neurons, immune cells, and endothelial cells. Using these mice, we simultaneously modeled the dynamics of KRAS, p53, and LKB1, the top three significantly mutated genes in lung adenocarcinoma. Delivery of a single AAV vector in the lung generated loss-of-function mutations in p53 and Lkb1, as well as homology-directed repair-mediated Kras(G12D) mutations, leading to macroscopic tumors of adenocarcinoma pathology. Together, these results suggest that Cas9 mice empower a wide range of biological and disease modeling applications.


Nature | 2014

CRISPR-mediated direct mutation of cancer genes in the mouse liver.

Wen-Bin Xue; Sidi Chen; Hao Yin; Tuomas Tammela; Thales Papagiannakopoulos; Nikhil S. Joshi; Wenxin Cai; Gillian R. Yang; Roderick T. Bronson; Denise G. Crowley; Feng Zhang; Daniel G. Anderson; Phillip A. Sharp; Tyler Jacks

The study of cancer genes in mouse models has traditionally relied on genetically-engineered strains made via transgenesis or gene targeting in embryonic stem cells. Here we describe a new method of cancer model generation using the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system in vivo in wild-type mice. We used hydrodynamic injection to deliver a CRISPR plasmid DNA expressing Cas9 and single guide RNAs (sgRNAs) to the liver that directly target the tumour suppressor genes Pten (ref. 5) and p53 (also known as TP53 and Trp53) (ref. 6), alone and in combination. CRISPR-mediated Pten mutation led to elevated Akt phosphorylation and lipid accumulation in hepatocytes, phenocopying the effects of deletion of the gene using Cre–LoxP technology. Simultaneous targeting of Pten and p53 induced liver tumours that mimicked those caused by Cre–loxP-mediated deletion of Pten and p53. DNA sequencing of liver and tumour tissue revealed insertion or deletion mutations of the tumour suppressor genes, including bi-allelic mutations of both Pten and p53 in tumours. Furthermore, co-injection of Cas9 plasmids harbouring sgRNAs targeting the β-catenin gene and a single-stranded DNA oligonucleotide donor carrying activating point mutations led to the generation of hepatocytes with nuclear localization of β-catenin. This study demonstrates the feasibility of direct mutation of tumour suppressor genes and oncogenes in the liver using the CRISPR/Cas system, which presents a new avenue for rapid development of liver cancer models and functional genomics.


Cell | 2015

Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis

Sidi Chen; Neville E. Sanjana; Kaijie Zheng; Ophir Shalem; Kyungheon Lee; Xi Shi; David Arthur Scott; Jun S. Song; Jen Q. Pan; Ralph Weissleder; Hakho Lee; Feng Zhang; Phillip A. Sharp

Genetic screens are powerful tools for identifying genes responsible for diverse phenotypes. Here we describe a genome-wide CRISPR/Cas9-mediated loss-of-function screen in tumor growth and metastasis. We mutagenized a non-metastatic mouse cancer cell line using a genome-scale library with 67,405 single-guide RNAs (sgRNAs). The mutant cell pool rapidly generates metastases when transplanted into immunocompromised mice. Enriched sgRNAs in lung metastases and late-stage primary tumors were found to target a small set of genes, suggesting that specific loss-of-function mutations drive tumor growth and metastasis. Individual sgRNAs and a small pool of 624 sgRNAs targeting the top-scoring genes from the primary screen dramatically accelerate metastasis. In all of these experiments, the effect of mutations on primary tumor growth positively correlates with the development of metastases. Our study demonstrates Cas9-based screening as a robust method to systematically assay gene phenotypes in cancer evolution in vivo.


Science | 2010

New Genes in Drosophila Quickly Become Essential

Sidi Chen; Yong Zhang; Manyuan Long

Essential and New Genes can be broadly grouped into two sets on the basis of their contribution to fitness: those that are essential to the life of an organism and those that can be dispensed with. However, the degree of essentiality in evolutionarily “new” genes—genes that have originated in the recent past—is unknown. Chen et al. (p. 1682) investigated the origination and evolution of new genes within 12 Drosophila species and found, surprisingly, that over one-third of genes that have originated within the last 3.5 million years show essential function and that these functions are overrepresented during larval development. Approximately the same proportion of older genes was essential, although many of these genes also appear to show enrichment at later developmental stages. These findings challenge conventional wisdom that would claim that essential genes are ancient and conserved among animal taxa. One-third of evolutionary young genes is essential to fruit flies. To investigate the origin and evolution of essential genes, we identified and phenotyped 195 young protein-coding genes, which originated 3 to 35 million years ago in Drosophila. Knocking down expression with RNA interference showed that 30% of newly arisen genes are essential for viability. The proportion of genes that are essential is similar in every evolutionary age group that we examined. Under constitutive silencing of these young essential genes, lethality was high in the pupal stage and also found in the larval stages. Lethality was attributed to diverse cellular and developmental defects, such as organ formation and patterning defects. These data suggest that new genes frequently and rapidly evolve essential functions and participate in development.


Nature Reviews Genetics | 2013

New genes as drivers of phenotypic evolution

Sidi Chen; Benjamin H. Krinsky; Manyuan Long

During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution.


Annual Review of Genetics | 2013

New Gene Evolution: Little Did We Know

Manyuan Long; Nicholas W. VanKuren; Sidi Chen; Maria D. Vibranovski

Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and how they evolve to be critical components of the genetic systems that determine the biological diversity of life. Two decades of effort have shed light on the process of new gene origination and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular, and phenotypic functions.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The evolution of courtship behaviors through the origination of a new gene in Drosophila

Hongzheng Dai; Ying Chen; Sidi Chen; Qiyan Mao; David A. Kennedy; Patrick Landback; Adam Eyre-Walker; Wei Du; Manyuan Long

New genes can originate by the combination of sequences from unrelated genes or their duplicates to form a chimeric structure. These chimeric genes often evolve rapidly, suggesting that they undergo adaptive evolution and may therefore be involved in novel phenotypes. Their functions, however, are rarely known. Here, we describe the phenotypic effects of a chimeric gene, sphinx, that has recently evolved in Drosophila melanogaster. We show that a knockout of this gene leads to increased male–male courtship in D. melanogaster, although it leaves other aspects of mating behavior unchanged. Comparative studies of courtship behavior in other closely related Drosophila species suggest that this mutant phenotype of male–male courtship is the ancestral condition because these related species show much higher levels of male–male courtship than D. melanogaster. D. melanogaster therefore seems to have evolved in its courtship behaviors by the recruitment of a new chimeric gene.


Cell | 2015

Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids

Dengke K. Ma; Zhijie Li; Alice Y. Lu; Fang Sun; Sidi Chen; Michael Rothe; Ralph Menzel; Fei Sun; H. Robert Horvitz

Cells adapt to temperature shifts by adjusting levels of lipid desaturation and membrane fluidity. This fundamental process occurs in nearly all forms of life, but its mechanism in eukaryotes is unknown. We discovered that the evolutionarily conserved Caenorhabditis elegans gene acdh-11 (acyl-CoA dehydrogenase [ACDH]) facilitates heat adaptation by regulating the lipid desaturase FAT-7. Human ACDH deficiency causes the most common inherited disorders of fatty acid oxidation, with syndromes that are exacerbated by hyperthermia. Heat upregulates acdh-11 expression to decrease fat-7 expression. We solved the high-resolution crystal structure of ACDH-11 and established the molecular basis of its selective and high-affinity binding to C11/C12-chain fatty acids. ACDH-11 sequesters C11/C12-chain fatty acids and prevents these fatty acids from activating nuclear hormone receptors and driving fat-7 expression. Thus, the ACDH-11 pathway drives heat adaptation by linking temperature shifts to regulation of lipid desaturase levels and membrane fluidity via an unprecedented mode of fatty acid signaling.


The EMBO Journal | 2012

Reshaping of global gene expression networks and sex-biased gene expression by integration of a young gene

Sidi Chen; Xiaochun Ni; Benjamin H. Krinsky; Yong Zhang; Maria D. Vibranovski; Kevin P. White; Manyuan Long

New genes originate frequently across diverse taxa. Given that genetic networks are typically comprised of robust, co‐evolved interactions, the emergence of new genes raises an intriguing question: how do new genes interact with pre‐existing genes? Here, we show that a recently originated gene rapidly evolved new gene networks and impacted sex‐biased gene expression in Drosophila. This 4–6 million‐year‐old factor, named Zeus for its role in male fecundity, originated through retroposition of a highly conserved housekeeping gene, Caf40. Zeus acquired male reproductive organ expression patterns and phenotypes. Comparative expression profiling of mutants and closely related species revealed that Zeus has recruited a new set of downstream genes, and shaped the evolution of gene expression in germline. Comparative ChIP‐chip revealed that the genomic binding profile of Zeus diverged rapidly from Caf40. These data demonstrate, for the first time, how a new gene quickly evolved novel networks governing essential biological processes at the genomic level.


PLOS ONE | 2011

Highly Tissue Specific Expression of Sphinx Supports Its Male Courtship Related Role in Drosophila melanogaster

Ying Chen; Hongzheng Dai; Sidi Chen; Luoying Zhang; Manyuan Long

Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5′ flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

Collaboration


Dive into the Sidi Chen's collaboration.

Top Co-Authors

Avatar

Phillip A. Sharp

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Feng Zhang

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randall Jeffrey Platt

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Daniel G. Anderson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Hao Yin

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tyler Jacks

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge