Siew Hong Lam
National University of Singapore
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Siew Hong Lam.
Developmental and Comparative Immunology | 2004
Siew Hong Lam; H.L Chua; Zhiyuan Gong; T.J. Lam; Y.M. Sin
The development and maturation of the immune system in zebrafish was investigated using immune-related gene expression profiling by quantitative real-time polymerase chain reaction, in situ hybridization (ISH), immunoglobulin (Ig) detection by immuno-affinity purification and Western blotting as well as immersion immunization experiments. Ikaros expression was first detected at 1 day post-fertilization (dpf) and thereafter increased gradually to more than two-fold between 28 and 42dpf before decreasing to less than the initial 1dpf expression level in adult fish (aged 105dpf). Recombination activating gene-1 (Rag-1) expression levels increased rapidly (by 10-fold) between 3 and 17dpf, reaching a maximum between 21 and 28dpf before decreasing gradually. However, in adult fish aged 105dpf, the expression level of Rag-1 had dropped markedly, and was equivalent to the expression level at 3dpf. T-cell receptor alpha constant region and immunoglobulin light chain constant region (IgLC) isotype-1, 2 and 3 mRNAs were detected at low levels by 3dpf and their expression levels increased steadily to the adult range between 4 and 6 weeks post-fertilization (wpf). Using tissue-section ISH, Rag-1 expression was detected in head kidney by 2wpf while IgLC-1, 2 and 3 were detected in the head kidney and the thymus by 3wpf onwards. Secreted Ig was only detectable using immuno-affinity purification and Western blotting by 4wpf. Humoral response to T-independent antigen (formalin-killed Aeromonas hydrophila) and T-dependent antigen (human gamma globulin) was observed in zebrafish immunized at 4 and 6wpf, respectively, indicating that immunocompetence was achieved. The findings reveal that the zebrafish immune system is morphologically and functionally mature by 4-6wpf.
Nature Biotechnology | 2006
Siew Hong Lam; Yi Lian Wu; Vinsensius B. Vega; Lance D. Miller; Jan M. Spitsbergen; Yan Tong; Huiqing Zhan; Kunde R Govindarajan; Serene Lee; Sinnakarupan Mathavan; Karuturi R. Krishna Murthy; Donald R. Buhler; Edison T. Liu; Zhiyuan Gong
The zebrafish (Danio rerio) has been long advocated as a model for cancer research, but little is known about the real molecular similarities between zebrafish and human tumors. Comparative analysis of microarray data from zebrafish liver tumors with those from four human tumor types revealed molecular conservation at various levels between fish and human tumors. This approach provides a useful strategy for identifying an expression signature that is strongly associated with a disease phenotype.
BMC Genomics | 2010
Choong Yong Ung; Siew Hong Lam; Mya Myintzu Hlaing; Cecilia Lanny Winata; Svetlana Korzh; Sinnakaruppan Mathavan; Zhiyuan Gong
BackgroundMercury is a prominent environmental contaminant that causes detrimental effects to human health. Although the liver has been known to be a main target organ, there is limited information on in vivo molecular mechanism of mercury-induced toxicity in the liver. By using transcriptome analysis, phenotypic anchoring and validation of targeted gene expression in zebrafish, mercury-induced hepatotoxicity was investigated and a number of perturbed cellular processes were identified and compared with those captured in the in vitro human cell line studies.ResultsHepato-transcriptome analysis of mercury-exposed zebrafish revealed that the earliest deregulated genes were associated with electron transport chain, mitochondrial fatty acid beta-oxidation, nuclear receptor signaling and apoptotic pathway, followed by complement system and proteasome pathway, and thereafter DNA damage, hypoxia, Wnt signaling, fatty acid synthesis, gluconeogenesis, cell cycle and motility. Comparative meta-analysis of microarray data between zebrafish liver and human HepG2 cells exposed to mercury identified some common toxicological effects of mercury-induced hepatotoxicity in both models. Histological analyses of liver from mercury-exposed fish revealed morphological changes of liver parenchyma, decreased nucleated cell count, increased lipid vesicles, glycogen and apoptotic bodies, thus providing phenotypic evidence for anchoring of the transcriptome analysis. Validation of targeted gene expression confirmed deregulated gene-pathways from enrichment analysis. Some of these genes responding to low concentrations of mercury may serve as toxicogenomic-based markers for detection and health risk assessment of environmental mercury contaminations.ConclusionMercury-induced hepatotoxicity was triggered by oxidative stresses, intrinsic apoptotic pathway, deregulation of nuclear receptor and kinase activities including Gsk3 that deregulates Wnt signaling pathway, gluconeogenesis, and adipogenesis, leading to mitochondrial dysfunction, endocrine disruption and metabolic disorders. This study provides important mechanistic insights into mercury-induced liver toxicity in a whole-animal physiology context, which will help in understanding the syndromes caused by mercury poisoning. The molecular conservation of mercury-induced hepatotoxicity between zebrafish and human cell line reveals the feasibility of using zebrafish to model molecular toxicity in human for toxicant risk assessments.
PLOS Genetics | 2008
Siew Hong Lam; Sinnakarupan Mathavan; Yan Tong; Haixia Li; R. Krishna Murthy Karuturi; Yilian Wu; Vinsensius B. Vega; Edison T. Liu; Zhiyuan Gong
The ability to perform large-scale, expression-based chemogenomics on whole adult organisms, as in invertebrate models (worm and fly), is highly desirable for a vertebrate model but its feasibility and potential has not been demonstrated. We performed expression-based chemogenomics on the whole adult organism of a vertebrate model, the zebrafish, and demonstrated its potential for large-scale predictive and discovery chemical biology. Focusing on two classes of compounds with wide implications to human health, polycyclic (halogenated) aromatic hydrocarbons [P(H)AHs] and estrogenic compounds (ECs), we generated robust prediction models that can discriminate compounds of the same class from those of different classes in two large independent experiments. The robust expression signatures led to the identification of biomarkers for potent aryl hydrocarbon receptor (AHR) and estrogen receptor (ER) agonists, respectively, and were validated in multiple targeted tissues. Knowledge-based data mining of human homologs of zebrafish genes revealed highly conserved chemical-induced biological responses/effects, health risks, and novel biological insights associated with AHR and ER that could be inferred to humans. Thus, our study presents an effective, high-throughput strategy of capturing molecular snapshots of chemical-induced biological states of a whole adult vertebrate that provides information on biomarkers of effects, deregulated signaling pathways, and possible affected biological functions, perturbed physiological systems, and increased health risks. These findings place zebrafish in a strategic position to bridge the wide gap between cell-based and rodent models in chemogenomics research and applications, especially in preclinical drug discovery and toxicology.
Cell Cycle | 2006
Siew Hong Lam; Zhiyuan Gong
Although the zebrafish has many attributes of a promising cancer model, one outstandingquestion is how similar zebrafish and human tumors are at the molecular level. To date,supporting data from histology and ‘gene-to-gene’ comparisons with human data offer limitedinsights. Using comparative microarray analyses, we found striking molecular similaritiesbetween zebrafish and human liver neoplasia. Our data indicate that zebrafish liver tumorspossess the general molecular hallmarks of human liver cancer and some of the molecularsimilarities extend to the progression of liver tumors. The molecular conservation between fishand human liver tumors underscored the strong association and fundamental importance of thesegenes in liver neoplasia as well as their clinical potentials as diagnostic markers and/ortherapeutic targets. In addition, our comparative oncogenomic work provides a generalframework for comparing and validating microarray data of zebrafish model with human cancer,thus adding confidence of using the zebrafish to model human cancers.2
PLOS ONE | 2011
Siew Hong Lam; Mya Myintzu Hlaing; Xiaoyan Zhang; Chuan Yan; Zhenghua Duan; Lin Zhu; Choong Yong Ung; Sinnakaruppan Mathavan; Choon Nam Ong; Zhiyuan Gong
Bisphenol-A is an important environmental contaminant due to the increased early-life exposure that may pose significant health-risks to various organisms including humans. This study aimed to use zebrafish as a toxicogenomic model to capture transcriptomic and phenotypic changes for inference of signaling pathways, biological processes, physiological systems and identify potential biomarker genes that are affected by early-life exposure to bisphenol-A. Phenotypic analysis using wild-type zebrafish larvae revealed BPA early-life exposure toxicity caused cardiac edema, cranio-facial abnormality, failure of swimbladder inflation and poor tactile response. Fluorescent imaging analysis using three transgenic lines revealed suppressed neuron branching from the spinal cord, abnormal development of neuromast cells, and suppressed vascularization in the abdominal region. Using knowledge-based data mining algorithms, transcriptome analysis suggests that several signaling pathways involving ephrin receptor, clathrin-mediated endocytosis, synaptic long-term potentiation, axonal guidance, vascular endothelial growth factor, integrin and tight junction were deregulated. Physiological systems with related disorders associated with the nervous, cardiovascular, skeletal-muscular, blood and reproductive systems were implicated, hence corroborated with the phenotypic analysis. Further analysis identified a common set of BPA-targeted genes and revealed a plausible mechanism involving disruption of endocrine-regulated genes and processes in known susceptible tissue-organs. The expression of 28 genes were validated in a separate experiment using quantitative real-time PCR and 6 genes, ncl1, apoeb, mdm1, mycl1b, sp4, U1SNRNPBP homolog, were found to be sensitive and robust biomarkers for BPA early-life exposure toxicity. The susceptibility of sp4 to BPA perturbation suggests its role in altering brain development, function and subsequently behavior observed in laboratory animals exposed to BPA during early life, which is a health-risk concern of early life exposure in humans. The present study further established zebrafish as a model for toxicogenomic inference of early-life chemical exposure toxicity.
Expert Opinion on Drug Metabolism & Toxicology | 2011
Hendrian Sukardi; Hui Ting Chng; Eric Chun Yong Chan; Zhiyuan Gong; Siew Hong Lam
Introduction: Over the past decade, zebrafish have been tasked to play important roles from modeling human diseases to finding cures for them. Inadvertently, these fish now find themselves swimming along the drug development pipeline. A number of studies have been conducted to see if these small fish are up to the task of drug toxicity testing, an important rite of passage along the pharmaceutical pipeline. Areas covered: This review covers the recent publications (2008 – 2010) on the state-of-the-art applications that couple advanced technologies with the unique advantages of zebrafish for drug toxicity screening. The paper looks at the several automated high-throughput platforms that have been developed for zebrafish teratogenicity, cardiotoxicity and neuro-sensory organ toxicity assays over the past 3 years as well as the important studies related to metabolism and biotransformation of selected drugs that have been initiated. This paper also reviews their mechanistic and predictive omics applications. Expert opinion: While there have been a number of developments over the past 3 years and indeed over the last 10 years, challenges and limitations still exist, which, unless overcome, will prevent zebrafish from truly reaching their full potential as a drug toxicological model. That being said, recent developments have suggested that zebrafish could play a role in bridging the gap between in vitro cell-based models and in vivo mammalian models.
Disease Models & Mechanisms | 2011
Anh Tuan Nguyen; Alexander Emelyanov; Chor Hui Vivien Koh; Jan M. Spitsbergen; Siew Hong Lam; Sinnakaruppan Mathavan; Serguei Parinov; Zhiyuan Gong
SUMMARY Human liver cancer is one of the deadliest cancers worldwide, with hepatocellular carcinoma (HCC) being the most common type. Aberrant Ras signaling has been implicated in the development and progression of human HCC, but a complete understanding of the molecular mechanisms of this protein in hepatocarcinogenesis remains elusive. In this study, a stable in vivo liver cancer model using transgenic zebrafish was generated to elucidate Ras-driven tumorigenesis in HCC. Using the liver-specific fabp10 (fatty acid binding protein 10) promoter, we overexpressed oncogenic krasV12 specifically in the transgenic zebrafish liver. Only a high level of krasV12 expression initiated liver tumorigenesis, which progressed from hyperplasia to benign and malignant tumors with activation of the Ras-Raf-MEK-ERK and Wnt–β-catenin pathways. Histological diagnosis of zebrafish tumors identified HCC as the main lesion. The tumors were invasive and transplantable, indicating malignancy of these HCC cells. Oncogenic krasV12 was also found to trigger p53-dependent senescence as a tumor suppressive barrier in the pre-neoplastic stage. Microarray analysis of zebrafish liver hyperplasia and HCC uncovered the deregulation of several stage-specific and common biological processes and signaling pathways responsible for krasV12-driven liver tumorigenesis that recapitulated the molecular hallmarks of human liver cancer. Cross-species comparisons of cancer transcriptomes further defined a HCC-specific gene signature as well as a liver cancer progression gene signature that are evolutionarily conserved between human and zebrafish. Collectively, our study presents a comprehensive portrait of molecular mechanisms during progressive Ras-induced HCC. These observations indicate the validity of our transgenic zebrafish to model human liver cancer, and this model might act as a useful platform for drug screening and identifying new therapeutic targets.
PLOS ONE | 2013
Weiling Zheng; Hongyan Xu; Siew Hong Lam; Huaien Luo; R. Krishna Murthy Karuturi; Zhiyuan Gong
The liver is one of the most sex-dimorphic organs in both oviparous and viviparous animals. In order to understand the molecular basis of the difference between male and female livers, high-throughput RNA-SAGE (serial analysis of gene expression) sequencing was performed for zebrafish livers of both sexes and their transcriptomes were compared. Both sexes had abundantly expressed genes involved in translation, coagulation and lipid metabolism, consistent with the general function of the liver. For sex-biased transcripts, from in addition to the high enrichment of vitellogenin transcripts in spawning female livers, which constituted nearly 80% of total mRNA, it is apparent that the female-biased genes were mostly involved in ribosome/translation, estrogen pathway, lipid transport, etc, while the male-biased genes were enriched for oxidation reduction, carbohydrate metabolism, coagulation, protein transport and localization, etc. Sexual dimorphism on xenobiotic metabolism and anti-oxidation was also noted and it is likely that retinol x receptor (RXR) and liver x receptor (LXR) play central roles in regulating the sexual differences of lipid and cholesterol metabolisms. Consistent with high ribosomal/translational activities in the female liver, female-biased genes were significantly regulated by two important transcription factors, Myc and Mycn. In contrast, Male livers showed activation of transcription factors Ppargc1b, Hnf4a, and Stat4, which regulate lipid and glucose metabolisms and various cellular activities. The transcriptomic responses to sex hormones, 17β-estradiol (E2) or 11-keto testosterone (KT11), were also investigated in both male and female livers and we found that female livers were relatively insensitive to sex hormone disturbance, while the male livers were readily affected. E2 feminized male liver by up-regulating female-biased transcripts and down-regulating male-biased transcripts. The information obtained in this study provides comprehensive insights into the sexual dimorphism of zebrafish liver transcriptome and will facilitate further development of the zebrafish as a human liver disease model.
PLOS ONE | 2013
Hongyan Xu; Siew Hong Lam; Yuan Yuan Shen; Zhiyuan Gong
Inorganic arsenic is a worldwide metalloid pollutant in environment. Although extensive studies on arsenic-induced toxicity have been conducted using in vivo and in vitro models, the exact molecular mechanism of arsenate toxicity remains elusive. Here, the RNA-SAGE (serial analysis of gene expression) sequencing technology was used to analyse hepatic response to arsenic exposure at the transcriptome level. Based on more than 12 million SAGE tags mapped to zebrafish genes, 1,444 differentially expressed genes (750 up-regulated and 694 down-regulated) were identified from a relatively abundant transcripts (>10 TPM [transcripts per million]) based on minimal two-fold change. By gene ontology analyses, these differentially expressed genes were significantly enriched in several major biological processes including oxidation reduction, translation, iron ion transport, cell redox, homeostasis, etc. Accordingly, the main pathways disturbed include metabolic pathways, proteasome, oxidative phosphorylation, cancer, etc. Ingenity Pathway Analysis further revealed a network with four important upstream factors or hub genes, including Jun, Kras, APoE and Nr2f2. The network indicated apparent molecular events involved in oxidative stress, carcinogenesis, and metabolism. In order to identify potential biomarker genes for arsenic exposure, 27 out of 29 up-regulated transcripts were validated by RT-qPCR analysis in pooled RNA samples. Among these, 14 transcripts were further confirmed for up-regulation by a lower dosage of arsenic in majority of individual zebrafish. Finally, at least four of these genes, frh3 (ferrintin H3), mgst1 (microsomal glutathione S-transferase-like), cmbl (carboxymethylenebutenolidase homolog) and slc40a1 (solute carrier family 40 [iron-regulated transporter], member 1) could be confirmed in individual medaka fish similarly treated by arsenic; thus, these four genes might be robust arsenic biomarkers across species. Thus, our work represents the first comprehensive investigation of molecular mechanism of asenic toxicity and genome-wide search for potential biomarkers for arsenic exposure.