Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sigal Lechno-Yossef is active.

Publication


Featured researches published by Sigal Lechno-Yossef.


Molecular Microbiology | 2005

Clustered genes required for synthesis and deposition of envelope glycolipids in Anabaena sp. strain PCC 7120

Qing Fan; Guocun Huang; Sigal Lechno-Yossef; C. Peter Wolk; Takakazu Kaneko; Satoshi Tabata

Photoreduction of dinitrogen by heterocyst‐forming cyanobacteria is of great importance ecologically and for subsistence rice agriculture. Their heterocysts must have a glycolipid envelope layer that limits the entry of oxygen if nitrogenase is to remain active to fix dinitrogen in an oxygen‐containing milieu (the Fox+ phenotype). Genes alr5354 (hglD), alr5355 (hglC) and alr5357 (hglB) of the filamentous cyanobacterium, Anabaena sp. strain PCC 7120, and hglE of Nostoc punctiforme are required for synthesis of heterocyst envelope glycolipids. Newly identified Fox– mutants bear transposons in nearby open reading frames (orfs) all5343, all5345–asr5349 and alr5351–alr5358. Complementation and other analysis provide evidence that at least orfs all5343 (or a co‐transcribed gene), all5345, all5347, alr5348, asr5350–alr5353 and alr5356, but not asr5349, are also required for a Fox+ phenotype. Lipid and sequence analyses suggest that alr5351–alr5357 encode the enzymes that biosynthesize the glycolipid aglycones. Electron microscopy indicates a role of all5345 through all5347 in the normal deposition of the envelope glycolipids.


Journal of Bacteriology | 2007

Septum-Localized Protein Required for Filament Integrity and Diazotrophy in the Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120

Enrique Flores; Rafael Pernil; Alicia M. Muro-Pastor; Vicente Mariscal; Iris Maldener; Sigal Lechno-Yossef; Qing Fan; C. Peter Wolk; Antonia Herrero

Heterocysts, formed when filamentous cyanobacteria, such as Anabaena sp. strain PCC 7120, are grown in the absence of combined nitrogen, are cells that are specialized in fixing atmospheric nitrogen (N(2)) under oxic conditions and that transfer fixed nitrogen to the vegetative cells of the filament. Anabaena sp. mutants whose sepJ gene (open reading frame alr2338 of the Anabaena sp. genome) was affected showed filament fragmentation and arrested heterocyst differentiation at an early stage. In a sepJ insertional mutant, a layer similar to a heterocyst polysaccharide layer was formed, but the heterocyst-specific glycolipids were not synthesized. The sepJ mutant did not exhibit nitrogenase activity even when assayed under anoxic conditions. In contrast to proheterocysts produced in the wild type, those produced in the sepJ mutant still divided. SepJ is a multidomain protein whose N-terminal region is predicted to be periplasmic and whose C-terminal domain resembles an export permease. Using a green fluorescent protein translationally fused to the carboxyl terminus of SepJ, we observed that in mature heterocysts and vegetative cells, the protein is localized at the intercellular septa, and when cell division starts, it is localized in a ring whose position is similar to that of a Z ring. SepJ is a novel composite protein needed for filament integrity, proper heterocyst development, and diazotrophic growth.


Archives of Microbiology | 2005

Wide variation in the cyanobacterial complement of presumptive penicillin-binding proteins

Francisco Leganés; Amaya Blanco-Rivero; Francisca Fernández-Piñas; Miguel Redondo; Eduardo Fernández-Valiente; Qing Fan; Sigal Lechno-Yossef; C. Peter Wolk

A genomic analysis of putative penicillin-binding proteins (PBPs) that are involved in the synthesis of the peptidoglycan layer of the cell wall and are encoded in 12 cyanobacterial genomes was performed in order to help elucidate the role(s) of these proteins in peptidoglycan synthesis, especially during cyanobacterial cellular differentiation. The analysis suggested that the minimum set of PBPs needed to assemble the peptidoglycan layer in cyanobacteria probably does not exceed one bifunctional transpeptidase–transglycosylase Class A high-molecular-weight PBP; two Class B high-molecular-weight PBPs, one of them probably involved in cellular elongation and the other in septum formation; and one low-molecular-weight PBP. The low-molecular-weight PBPs of all of the cyanobacteria analyzed are putative endopeptidases and are encoded by fewer genes than in Escherichia coli. We show that in Anabaena sp. strain PCC 7120, predicted proteins All2981 and Alr4579, like Alr5101, are Class A high-molecular-weight PBPs that are required for the functional differentiation of aerobically diazotrophic heterocysts, indicating that some members of this class of PBPs are required specifically for cellular developmental processes.


Journal of Bacteriology | 2007

Predicted Glycosyl Transferase Genes Located outside the HEP Island Are Required for Formation of Heterocyst Envelope Polysaccharide in Anabaena sp. Strain PCC 7120

Yu Wang; Sigal Lechno-Yossef; Yangmin Gong; Qing Fan; C. Peter Wolk; Xudong Xu

During maturation, heterocysts form an envelope layer of polysaccharide, called heterocyst envelope polysaccharide (HEP), whose synthesis depends on a cluster of genes, the HEP island, and on an additional, distant gene, hepB, or a gene immediately downstream from hepB. We show that HEP formation depends upon the predicted glycosyl transferase genes all4160 at a third locus and alr3699, which is adjacent to hepB and is cotranscribed with it. Mutations in the histidine kinase genes hepN and hepK appear to silence the promoter of hepB and incompletely down-regulate all4160.


Archives of Microbiology | 2007

Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120.

C. Peter Wolk; Qing Fan; Ruanbao Zhou; Guocun Huang; Sigal Lechno-Yossef; Tanya Kuritz; Elizabeth Wojciuch

The clones generated in a sequencing project represent a resource for subsequent analysis of the organism whose genome has been sequenced. We describe an interrelated group of cloning vectors that either integrate into the genome or replicate, and that enhance the utility, for developmental and other studies, of the clones used to determine the genomic sequence of the cyanobacterium, Anabaena sp. strain PCC 7120. One integrating vector is a mobilizable BAC vector that was used both to generate bridging clones and to complement transposon mutations. Upon addition of a cassette that permits mobilization and selection, pUC-based sequencing clones can also integrate into the genome and thereupon complement transposon mutations. The replicating vectors are based on cyanobacterial plasmid pDU1, whose sequence we report, and on broad-host-range plasmid RSF1010. The RSF1010- and pDU1-based vectors provide the opportunity to express different genes from either cell-type-specific or -generalist promoters, simultaneously from different plasmids in the same cyanobacterial cells. We show that pDU1 ORF4 and its upstream region play an essential role in the replication and copy number of pDU1, and that ORFs alr2887 and alr3546 (hetFA) of Anabaena sp. are required specifically for fixation of dinitrogen under oxic conditions.


BMC Genomics | 2013

Cell-specific gene expression in Anabaena variabilis grown phototrophically, mixotrophically, and heterotrophically

Jeong-Jin Park; Sigal Lechno-Yossef; Coleman Peter Wolk; Claire Vieille

BackgroundWhen the filamentous cyanobacterium Anabaena variabilis grows aerobically without combined nitrogen, some vegetative cells differentiate into N2-fixing heterocysts, while the other vegetative cells perform photosynthesis. Microarrays of sequences within protein-encoding genes were probed with RNA purified from extracts of vegetative cells, from isolated heterocysts, and from whole filaments to investigate transcript levels, and carbon and energy metabolism, in vegetative cells and heterocysts in phototrophic, mixotrophic, and heterotrophic cultures.ResultsHeterocysts represent only 5% to 10% of cells in the filaments. Accordingly, levels of specific transcripts in vegetative cells were with few exceptions very close to those in whole filaments and, also with few exceptions (e.g., nif1 transcripts), levels of specific transcripts in heterocysts had little effect on the overall level of those transcripts in filaments. In phototrophic, mixotrophic, and heterotrophic growth conditions, respectively, 845, 649, and 846 genes showed more than 2-fold difference (p < 0.01) in transcript levels between vegetative cells and heterocysts. Principal component analysis showed that the culture conditions tested affected transcript patterns strongly in vegetative cells but much less in heterocysts. Transcript levels of the genes involved in phycobilisome assembly, photosynthesis, and CO2 assimilation were high in vegetative cells in phototrophic conditions, and decreased when fructose was provided. Our results suggest that Gln, Glu, Ser, Gly, Cys, Thr, and Pro can be actively produced in heterocysts. Whether other protein amino acids are synthesized in heterocysts is unclear. Two possible components of a sucrose transporter were identified that were upregulated in heterocysts in two growth conditions. We consider it likely that genes with unknown function represent a larger fraction of total transcripts in heterocysts than in vegetative cells across growth conditions.ConclusionsThis study provides the first comparison of transcript levels in heterocysts and vegetative cells from heterocyst-bearing filaments of Anabaena. Although the data presented do not give a complete picture of metabolism in either type of cell, they provide a metabolic scaffold on which to build future analyses of cell-specific processes and of the interactions of the two types of cells.


Journal of Bacteriology | 2006

Signal Transduction Genes Required for Heterocyst Maturation in Anabaena sp. Strain PCC 7120

Qing Fan; Sigal Lechno-Yossef; Shigeki Ehira; Takakazu Kaneko; Masayuki Ohmori; Naoki Sato; Satoshi Tabata; C. Peter Wolk

How heterocyst differentiation is regulated, once particular cells start to differentiate, remains largely unknown. Using near-saturation transposon mutagenesis and testing of transposon-tagged loci, we identified three presumptive regulatory genes not previously recognized as being required specifically for normal heterocyst maturation. One of these genes has a hitherto unreported mutant phenotype. Two previously identified regulatory genes were further characterized.


Journal of Bacteriology | 2006

Mutations in Four Regulatory Genes Have Interrelated Effects on Heterocyst Maturation in Anabaena sp. Strain PCC 7120

Sigal Lechno-Yossef; Qing Fan; Shigeki Ehira; Naoki Sato; C. Peter Wolk

Regulatory genes hepK, hepN, henR, and hepS are required for heterocyst maturation in Anabaena sp. strain PCC 7120. They presumptively encode two histidine kinases, a response regulator, and a serine/threonine kinase, respectively. To identify relationships between those genes, we compared global patterns of gene expression, at 14 h after nitrogen step-down, in corresponding mutants and in the wild-type strain. Heterocyst envelopes of mutants affected in any of those genes lack a homogeneous, polysaccharide layer. Those of a henR mutant also lack a glycolipid layer. patA, which encodes a positive effector of heterocyst differentiation, was up-regulated in all mutants except the hepK mutant, suggesting that patA expression may be inhibited by products related to heterocyst development. hepS and hepK were up-regulated if mutated and so appear to be negatively autoregulated. HepS and HenR regulated a common set of genes and so appear to belong to one regulatory system. Some nontranscriptional mechanism may account for the observation that henR mutants lack, and hepS mutants possess, a glycolipid layer, even though both mutations down-regulated genes involved in formation of the glycolipid layer. HepK and HepN also affected transcription of a common set of genes and therefore appear to share a regulatory pathway. However, the transcript abundance of other genes differed very significantly from expression in the wild-type strain in either the hepK or hepN mutant while differing very little from wild-type expression in the other of those two mutants. Therefore, hepK and hepN appear to participate also in separate pathways.


Journal of Bacteriology | 2012

A Major Facilitator Superfamily Protein, HepP, Is Involved in Formation of the Heterocyst Envelope Polysaccharide in the Cyanobacterium Anabaena sp. Strain PCC 7120

R. Lopez-Igual; Sigal Lechno-Yossef; Qing Fan; Antonia Herrero; Enrique Flores; C P Wolk

Some filamentous cyanobacteria such as Anabaena sp. strain PCC 7120 produce cells, termed heterocysts, specialized in nitrogen fixation. Heterocysts bear a thick envelope containing an inner layer of glycolipids and an outer layer of polysaccharide that restrict the diffusion of air (including O(2)) into the heterocyst. Anabaena sp. mutants impaired in production of either of those layers show a Fox(-) phenotype (requiring fixed nitrogen for growth under oxic conditions). We have characterized a set of transposon-induced Fox(-) mutants in which transposon Tn5-1063 was inserted into the Anabaena sp. chromosome open reading frame all1711 which encodes a predicted membrane protein that belongs to the major facilitator superfamily (MFS). These mutants showed higher nitrogenase activities under anoxic than under oxic conditions and altered sucrose uptake. Electron microscopy and alcian blue staining showed a lack of the heterocyst envelope polysaccharide (Hep) layer. Northern blot and primer extension analyses showed that, in a manner dependent on the nitrogen-control transcription factor NtcA, all1711 was strongly induced after nitrogen step-down. Confocal microscopy of an Anabaena sp. strain producing an All1711-green fluorescent protein (All1711-GFP) fusion protein showed induction in all cells of the filament but at higher levels in differentiating heterocysts. All1711-GFP was located in the periphery of the cells, consistent with All1711 being a cytoplasmic membrane protein. Expression of all1711 from the P(glnA) promoter in a multicopy plasmid led to production of a presumptive exopolysaccharide by vegetative cells. These results suggest that All1711, which we denote HepP, is involved in transport of glycoside(s), with a specific physiological role in production of Hep.


Journal of Bacteriology | 2011

Identification of Ten Anabaena sp. Genes That under Aerobic Conditions Are Required for Growth on Dinitrogen but Not for Growth on Fixed Nitrogen

Sigal Lechno-Yossef; Qing Fan; Elizabeth Wojciuch; C. Peter Wolk

Heterocysts are specialized cells required for aerobic fixation of dinitrogen by certain filamentous cyanobacteria. Numerous genes involved in the differentiation and function of heterocysts in Anabaena sp. strain PCC 7120 have been identified by mutagenizing and screening for mutants that require fixed nitrogen for growth in the presence of oxygen. We have verified that 10 Anabaena sp. genes, all1338, all1591, alr1728, all3278, all3520, all3582, all3850, all4019, alr4311, and all4388, identified initially by transposon mutagenesis, are such genes by complementing or reconstructing the original mutation and by determining whether the mutant phenotype might be due to a polar effect of the transposon. Elucidation of the roles of these genes should enhance understanding of heterocyst biology.

Collaboration


Dive into the Sigal Lechno-Yossef's collaboration.

Top Co-Authors

Avatar

C. Peter Wolk

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Qing Fan

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrique Flores

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guocun Huang

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Han Bao

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Matthew R. Melnicki

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Antonia Herrero

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge