Sigal Shefer
Tel Aviv University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sigal Shefer.
Molecular Ecology | 2004
Sigal Shefer; Avigdor Abelson; Ofer Mokady; Eli Geffen
The biota of the eastern basin of the Mediterranean Sea has experienced dramatic changes in the last decades, in part as a result of the massive invasion of Red Sea species. The mechanism generally hypothesized for the ‘Red‐to‐Med’ invasion is that of natural dispersal through the Suez Canal. To date, however, this hypothesis has not been tested. This study examines the mode of invasion, using as a model the mussel Brachidontes pharaonis, an acclaimed ‘Lessepsian migrant’ that thrives along the eastern Mediterranean coast. Our findings reveal two distinct lineages of haplotypes, and five possible explanations are discussed for this observation. We show that the genetic exchange among the Mediterranean, Gulf of Suez and the northern Red Sea is sufficiently large to counteract the build up of sequential genetic structure. Nevertheless, these basins are rich in unique haplotypes of unknown origin. We propose that it is historic secondary contact, an ongoing anthropogenic transport or both processes, that participate in driving the population dynamics of B. pharaonis in the Mediterranean and northern Red Sea.
BMC Evolutionary Biology | 2015
Dorothée Huchon; Amir Szitenberg; Sigal Shefer; Micha Ilan; Tamar Feldstein
BackgroundSelf-splicing introns are present in the mitochondria of members of most eukaryotic lineages. They are divided into Group I and Group II introns, according to their secondary structure and splicing mechanism. Being rare in animals, self-splicing introns were only described in a few sponges, cnidarians, placozoans and one annelid species. In sponges, three types of mitochondrial Group I introns were previously described in two demosponge families (Tetillidae, and Aplysinellidae) and in the homoscleromorph family Plakinidae. These three introns differ in their insertion site, secondary structure and in the sequence of the LAGLIDADG gene they encode. Notably, no group II introns have been previously described in sponges.ResultsWe report here the presence of mitochondrial introns in the cytochrome oxidase subunit 1 (COI) gene of three additional sponge species from three different families: Agelas oroides (Agelasidae, Agelasida), Cymbaxinellapverrucosa (Hymerhabdiidae, Agelasida) and Axinella polypoides (Axinellidae, Axinellida). We show, for the first time, that sponges can also harbour Group II introns in their COI gene, whose presence in animals’ mitochondria has so far been described in only two phyla, Placozoa and Annelida. Surprisingly, two different Group II introns were discovered in the COI gene of C. verrucosa. Phylogenetic analysis indicates that the Group II introns present in C. verrucosa are related to red algae (Rhodophyta) introns.ConclusionsThe differences found among intron secondary structures and the phylogenetic inferences support the hypothesis that the introns originated from independent horizontal gene transfer events. Our results thus suggest that self-splicing introns are more diverse in the mitochondrial genome of sponges than previously anticipated.
International Journal of Systematic and Evolutionary Microbiology | 2013
Markus Haber; Sigal Shefer; Assunta Giordano; Pierangelo Orlando; Agata Gambacorta; Micha Ilan
Two bacterial strains, VI.14 and VIII.04(T), were isolated from the Mediterranean sponge Axinella verrucosa collected off the Israeli coast near Sdot Yam. The non-motile, aerobic, Gram-negative isolates were oxidase-negative and catalase-positive, and formed golden-brown colonies on marine agar 2216. The pigment was neither diffusible nor flexirubin-like. Strain VIII.04(T) grew at 15-37 °C, at pH 6.0-9.0, in the presence of 20-50 g NaCl l(-1) and 20-80 g sea salts l(-1), The spectrum was narrower for strain VI.14, with growth at pH 7.0-8.0. and in the presence of 30-50 g NaCl l(-1) and 30-70 g sea salts l(-1). The predominant fatty acid (>50 %) in both strains was iso-C15 : 0, and the major respiratory quinone was MK-6. The DNA G+C content was 30.7 and 31.1 mol% for VIII.04(T) and VI.14, respectively. Results from 16S rRNA sequence similarity and phylogenetic analyses indicated that both strains are closely related to members of the family Flavobacteriaceae within the phylum Bacteroidetes, with as much as 91.7 % 16S rRNA sequence similarity. On the basis of data from the polyphasic analysis, we suggest that the strains represent a novel species in a new genus within the family Flavobacteriaceae, for which the name Aureivirga marina gen. nov., sp. nov. is proposed. Strain VIII.04(T) ( = ATCC BAA-2394(T) = LMG 26721(T)) is the type strain of Aureivirga marina.
International Journal of Systematic and Evolutionary Microbiology | 2013
Markus Haber; Sigal Shefer; Assunta Giordano; Pierangelo Orlando; Agata Gambacorta; Micha Ilan
The yellow-pigmented, non-motile, Gram-negative, strictly aerobic, rod-shaped bacterial strain VI.18(T) was isolated from the Mediterranean sponge Axinella verrucosa collected off the coast near Sdot Yam, Israel. Results from 16S rRNA gene sequence analysis indicated that the isolate belonged to the family Flammeovirgaceae. The highest nucleotide similarity (91.4 %) occurred with Aureibacter tunicatorum A5Q-118(T). The predominant cellular fatty acids of strain VI.18(T) were iso-C15 : 0 (56.0 %), iso-C17 : 1ω9c (22.8 %) and C16 : 0 (7.4 %) and its major respiratory quinone was MK-7. The DNA G+C content was 47.5 mol%. The strain could readily be distinguished from its phylogenetically closest relatives by phenotypic, physiological and chemotaxonomic properties. On the basis of the data from the present polyphasic study, we propose a novel genus and species within the family Flammeovirgaceae, with the name Fulvitalea axinellae gen. nov., sp. nov. Strain VI.18(T) ( = ATCC BAA-2395(T) = LMG 26722(T)) is the type strain of Fulvitalea axinellae.
International Journal of Systematic and Evolutionary Microbiology | 2013
Markus Haber; Sigal Shefer; Assunta Giordano; Pierangelo Orlando; Agata Gambacorta; Micha Ilan
A novel aerobic bacterium, designated strain PIII.02(T), was isolated from a Mediterranean sponge (Axinella polypoides) collected off the Israeli coast near Sdot Yam. The non-motile cells were Gram-staining-negative, oxidase-positive and catalase-positive. The orange pigment of colonies growing on marine agar was neither diffusible nor flexirubin-like. Strain PIII.02(T) grew at 15-35 °C, at pH 6.0-9.0, with 2.0-7.0 % (w/v) NaCl, and with 1.0-8.0 % (w/v) sea salts. The predominant fatty acids were iso-C15 : 0, iso-C16 : 1 H, iso-C16 : 0, C16 : 0, anteiso-C15 : 0 and C16 : 1ω7c. The major respiratory quinone was MK-7. The genomic DNA G+C content of the novel strain was 38.1 mol%. Results from 16S rRNA gene sequence analysis indicated that strain PIII.02(T) was distantly related to established members of the phylum Bacteroidetes. The established species found to be most closely related to the novel strain was Persicobacter diffluens NCIMB 1402(T) (87.6 % 16S rRNA gene sequence similarity). Based on the phenotypic and chemotaxonomic data and the results of the phylogenetic analyses, strain PIII.02(T) represents a novel species of a new genus, for which the name Luteivirga sdotyamensis gen. nov., sp. nov. is proposed. The type strain is PIII.02(T) ( = ATCC BAA-2393(T) = LMG 26723(T)).
Molecular Ecology | 2004
Sigal Shefer; Avigdor Abelson; Ofer Mokady; Eli Geffen
Aquatic Invasions | 2011
Galia Pasternak; Roni Ziv; Gal Eyal; Sigal Shefer; Henk K. Mienis; Oz Rittner; Bella S. Galil
Archive | 2012
Sigal Shefer; Tamar Feldstein; Henk K. Mienis; Oz Rittner; Amir Gur; Genus Mimachlamys Iredale
Mediterranean Marine Science | 2018
Tal Idan; Sigal Shefer; Tamar Feldstein; Ruth Yahel; Dorothée Huchon; Micha Ilan
Mediterranean Marine Science | 2017
L. Goren; Sigal Shefer; Tamar Feldstein